A Reinforcement Learning-Based Pantograph Control Strategy for Improving Current Collection Quality in High-Speed Railways

受电弓 强化学习 悬链线 计算机科学 最大化 火车 功率(物理) 增强学习 模拟 工程类 人工智能 数学优化 地图学 量子力学 结构工程 机械工程 数学 物理 地理
作者
Hui Wang,Zhiwei Han,Wenqiang Liu,Yan‐Bo Wu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 5915-5928 被引量:13
标识
DOI:10.1109/tnnls.2022.3219814
摘要

In high-speed railways, the pantograph-catenary system (PCS) is a critical subsystem of the train power supply system. In particular, when the double-PCS (DPCS) is in operation, the passing of the leading pantograph (LP) causes the contact force of the trailing pantograph (TP) to fluctuate violently, affecting the power collection quality of the electric multiple units (EMUs). The actively controlled pantograph is the most promising technique for reducing the pantograph-catenary contact force (PCCF) fluctuation and improving the current collection quality. Based on the Nash equilibrium framework, this study proposes a multiagent reinforcement learning (MARL) algorithm for active pantograph control called cooperative proximity policy optimization (Coo-PPO). In the algorithm implementation, the heterogeneous agents play a unique role in a cooperative environment guided by the global value function. Then, a novel reward propagation channel is proposed to reveal implicit associations between agents. Furthermore, a curriculum learning approach is adopted to strike a balance between reward maximization and rational movement patterns. An existing MARL algorithm and a traditional control strategy are compared in the same scenario to validate the proposed control strategy's performance. The experimental results show that the Coo-PPO algorithm obtains more rewards, significantly suppresses the fluctuation in PCCF (up to 41.55%), and dramatically decreases the TP's offline rate (up to 10.77%). This study adopts MARL technology for the first time to address the coordinated control of double pantographs in DPCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xrl完成签到,获得积分10
刚刚
xinran_lv完成签到,获得积分10
刚刚
wmy发布了新的文献求助10
1秒前
du发布了新的文献求助10
1秒前
FancyShi完成签到,获得积分10
1秒前
微生完成签到 ,获得积分10
1秒前
1秒前
阳小颖发布了新的文献求助10
1秒前
自信的丸子完成签到,获得积分10
2秒前
2秒前
顺心的芝麻完成签到 ,获得积分10
2秒前
科研圣体发布了新的文献求助10
2秒前
支妙完成签到,获得积分10
3秒前
3秒前
4秒前
wangdao完成签到,获得积分10
5秒前
5秒前
6秒前
HSF完成签到 ,获得积分10
6秒前
7秒前
yuki完成签到 ,获得积分10
7秒前
Xiaoyan发布了新的文献求助10
7秒前
8秒前
8秒前
秀丽友灵完成签到,获得积分10
9秒前
虚幻芷文完成签到,获得积分10
10秒前
20250702完成签到 ,获得积分10
10秒前
柏舟发布了新的文献求助20
10秒前
何hyy发布了新的文献求助10
11秒前
11秒前
星辰大海应助mbl2006采纳,获得200
11秒前
11秒前
12秒前
舒心思雁发布了新的文献求助10
13秒前
大舟Austin完成签到 ,获得积分10
13秒前
tifosi发布了新的文献求助10
14秒前
14秒前
15秒前
夏xia发布了新的文献求助10
15秒前
lyn发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286