Dual-Input Transformer: An End-to-End Model for Preoperative Assessment of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Ultrasonography

计算机科学 乳腺癌 磁共振成像 医学 新辅助治疗 人工智能 放射科 癌症 内科学
作者
Tong Tong,Dongyang Li,Jionghui Gu,Guo Chen,Guotao Bai,Xin Yang,Kun Wang,Tianan Jiang,Jie Tian
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 251-262 被引量:14
标识
DOI:10.1109/jbhi.2022.3216031
摘要

Neoadjuvant chemotherapy (NAC) is the primary method to reduce the burden of tumor and metastasis; in the treatment of breast cancer, it may provide additional opportunities for breast-conserving surgery. Preoperative assessment of pathological complete response (PCR) to NAC is important for developing individualized treatment approaches and predicting patient prognosis. Compared to magnetic resonance imaging (MRI) and mammography, ultrasonography (US) has the advantages of simplicity, flexibility, and real-time imaging. Moreover, it does not require radiation and can provide multi-time acquisition of the tumor during NAC treatment. Recently, deep learning radiomics models based on multi-time-point US images for the prediction of NAC effectiveness have been proposed. To further improve the prediction performance, we carefully designed four supporting modules for our proposed dual-input transformer (DiT): isolated tokens-to-token patch embedding module, shared position embedding, time embedding, and weighted average pooling feature representation modules. The design of each module considers the characteristics of the US images at multiple time points. We validated our model on our retrospective US dataset composed of 484 cases from two centers whose consistency is not sufficiently high. Patients were allocated to training (n = 297), validation (n = 99), and external test (n = 88) sets. The results show that our model can achieve better performance than the Siamese CNN and the standard tokens-to-token vision transformer without using multi-time-point images. The ablation study also proved the effectiveness of each module designed for DiT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
strangeliu完成签到,获得积分10
1秒前
1秒前
充电宝应助科研小民工采纳,获得10
4秒前
陈艳林发布了新的文献求助10
4秒前
qqqq发布了新的文献求助10
4秒前
4秒前
丸橙发布了新的文献求助10
4秒前
racz完成签到,获得积分10
5秒前
思源应助rou采纳,获得10
6秒前
7秒前
科研通AI5应助di采纳,获得10
8秒前
科研通AI5应助丸橙采纳,获得10
9秒前
racz发布了新的文献求助10
10秒前
标致夏真完成签到,获得积分10
11秒前
852应助陈艳林采纳,获得10
12秒前
云瑾发布了新的文献求助10
12秒前
姑苏平江初雪应助赵焱峥采纳,获得10
14秒前
silence完成签到,获得积分10
15秒前
烂漫百招完成签到,获得积分10
15秒前
16秒前
于鱼完成签到,获得积分10
17秒前
coli完成签到,获得积分10
18秒前
18秒前
温木成林完成签到,获得积分10
19秒前
秋菲菲完成签到,获得积分10
20秒前
...发布了新的文献求助10
21秒前
22秒前
科研通AI5应助qqqq采纳,获得10
23秒前
23秒前
23秒前
安迪宝刚完成签到,获得积分10
23秒前
科研小民工应助缓慢煎蛋采纳,获得350
24秒前
科目三应助nana采纳,获得10
24秒前
25秒前
zuanyhou发布了新的文献求助10
26秒前
Meiyu发布了新的文献求助10
27秒前
独特觅翠发布了新的文献求助10
28秒前
28秒前
550完成签到 ,获得积分10
28秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
The clinician's guide to the Behavior Assessment System for Children (BASC) 350
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726599
求助须知:如何正确求助?哪些是违规求助? 3271562
关于积分的说明 9972830
捐赠科研通 2987028
什么是DOI,文献DOI怎么找? 1638598
邀请新用户注册赠送积分活动 778179
科研通“疑难数据库(出版商)”最低求助积分说明 747508