Data augmentation for univariate time series forecasting with neural networks

单变量 增采样 计算机科学 人工神经网络 数据集 时间序列 机器学习 系列(地层学) 集合(抽象数据类型) 人工智能 数据挖掘 多元统计 生物 图像(数学) 古生物学 程序设计语言
作者
Artemios-Anargyros Semenoglou,Evangelos Spiliotis,Vassilios Assimakopoulos
出处
期刊:Pattern Recognition [Elsevier]
卷期号:134: 109132-109132 被引量:12
标识
DOI:10.1016/j.patcog.2022.109132
摘要

Neural networks have been proven particularly accurate in univariate time series forecasting settings, requiring however a significant number of training samples to be effectively trained. In machine learning applications where available data are limited, data augmentation techniques have been successfully used to generate synthetic data that resemble and complement the original train set. Since the potential of data augmentation has been largely neglected in univariate time series forecasting, in this study we investigate nine data augmentation techniques, ranging from simple transformations and adjustments to sophisticated generative models and a novel upsampling approach. We empirically evaluate the impact of data augmentation on forecasting accuracy considering both shallow and deep feed-forward neural networks and time series data sets of different sizes from the M4 and the Tourism competitions. Our results suggest that certain data augmentation techniques that build on upsampling and time series combinations can improve forecasting performance, especially when deep networks are used. However, these improvements become less significant as the initial size of the train set increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHYYAA发布了新的文献求助10
1秒前
彭于晏应助煜琪采纳,获得10
2秒前
3秒前
樊星完成签到,获得积分10
3秒前
yuan发布了新的文献求助10
4秒前
然然然后发布了新的文献求助10
4秒前
孙翔发布了新的文献求助10
5秒前
乐乐应助HHYYAA采纳,获得10
5秒前
初夏发布了新的文献求助10
5秒前
6秒前
樊星发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
11秒前
爆米花应助然然然后采纳,获得10
11秒前
15987342672发布了新的文献求助10
11秒前
妄想天使发布了新的文献求助10
16秒前
lslslslsllss发布了新的文献求助20
17秒前
17秒前
煜琪发布了新的文献求助10
17秒前
李健的小迷弟应助孙翔采纳,获得10
19秒前
YONG完成签到,获得积分10
21秒前
22秒前
24秒前
cz111完成签到 ,获得积分10
24秒前
Upup发布了新的文献求助10
25秒前
彭于晏应助煜琪采纳,获得10
25秒前
打打应助xu采纳,获得10
26秒前
28秒前
29秒前
31秒前
lu完成签到 ,获得积分10
32秒前
时光倒流的鱼完成签到,获得积分10
32秒前
然大宝完成签到,获得积分10
34秒前
lslslslsllss发布了新的文献求助20
34秒前
烟花应助ss采纳,获得10
35秒前
37秒前
12完成签到,获得积分10
38秒前
英俊的汉堡完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373831
求助须知:如何正确求助?哪些是违规求助? 4499875
关于积分的说明 14007415
捐赠科研通 4406786
什么是DOI,文献DOI怎么找? 2420717
邀请新用户注册赠送积分活动 1413451
关于科研通互助平台的介绍 1390059