清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Young’s double-slit experiment optimizer : A novel metaheuristic optimization algorithm for global and constraint optimization problems

元启发式 数学优化 约束(计算机辅助设计) 算法 狭缝 数学 全局优化 形状优化 计算机科学 有限元法 工程类 结构工程 几何学 物理 光学
作者
Mohamed Abdel‐Basset,Doaa El-Shahat,Mohammed Jameel,Mohamed Abouhawwash
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:403: 115652-115652 被引量:110
标识
DOI:10.1016/j.cma.2022.115652
摘要

Due to the global progress, the optimization problems are becoming more and more complex. Hence, deterministic and heuristic approaches are no longer adequate for dealing with such sophisticated problems. subsequently, metaheuristics have recently emerged as an effective alternative for addressing the optimization problems. This paper proposes a novel metaheuristic called Young’s Double-Slit Experiment (YDSE) optimizer, derived from a physical backdrop. The YDSE optimizer is inspired by Young’s double-slit experiment, which is regarded as one of the most well-known classical physics experiments, revealing the wave nature of light. In YDSE optimizer, each fringe represents a possible solution in the population. Many concepts are modeled from the experiment, such as monochromatic light waves, Huygens’ principle, constructive and destructive interference, wave intensity, amplitude, and path difference. The YDSE optimizer strikes a balance between exploration and exploitation by selecting either a constructive interference or a destructive interference based on the order number of the fringe. During the optimization process, the solution moves in search space based on its order number. If the solution has an odd number, it moves in the dark regions towards the central bright region, which is expected to contain the optimal solution. The algorithm exploits the promising areas in the bright fringe areas, which are assumed to contain the optimum. The performance of the YDSE optimizer is compared with another twelve metaheuristics using CEC 2014, CEC 2017, and CEC 2022. The benchmarks cover different unimodal, multimodal, hybrid, and composite test functions. Also, we consider ten constrained and unconstrained engineering optimization design problems. YDSE proved its superiority over the CEC 2014 and CEC 2017 winners, such as L-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA. The results and the statistical analysis demonstrated the outperformance of the proposed YDSE optimizer at a 95% confidence interval. • YDSE optimizer is a novel metaheuristic inspired by Young’s double-slit experiment. • We compare YDSE to existing algorithms using CEC 2014, 2017, 2022 benchmarks. • Ten optimization problems are considered from the engineering field. • The statistical analysis demonstrated the superiority of the proposed YDSE. • YDSE optimizer outperforms L-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fern发布了新的文献求助10
3秒前
moonlin发布了新的文献求助10
20秒前
乏味发布了新的文献求助10
25秒前
26秒前
41秒前
42秒前
45秒前
1分钟前
xiaoxiao完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助Fern采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
laber完成签到,获得积分0
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
Lshyong完成签到 ,获得积分10
1分钟前
oO完成签到 ,获得积分10
1分钟前
乏味发布了新的文献求助10
2分钟前
2分钟前
Liufgui应助乏味采纳,获得10
2分钟前
Fern发布了新的文献求助10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
lili完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Liufgui完成签到,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
kmzzy完成签到,获得积分10
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015320
求助须知:如何正确求助?哪些是违规求助? 3555265
关于积分的说明 11317937
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983