CNN‐Transformer for visual‐tactile fusion applied in road recognition of autonomous vehicles

计算机科学 人工智能 传感器融合 计算机视觉 模态(人机交互) 适应性 模式识别(心理学) 生态学 生物
作者
Runwu Shi,Shichun Yang,Yuyi Chen,Rui Wang,Mengyue Zhang,Jiayi Lu,Yaoguang Cao
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:166: 200-208 被引量:14
标识
DOI:10.1016/j.patrec.2022.11.023
摘要

Reliable autonomous driving requires comprehensive environment perception, among which the road recognition is critical for autonomous vehicles to achieve adaptability, reliability, and safety. Existing equipped sensors such as cameras, LiDAR, and accelerometers have been adopted widely for road recognition. However, single sensor based recognition methods present challenges in balancing high accuracy and adaptability. In this study, we propose a visual-tactile fusion road recognition system for autonomous vehicles. The visual modality is derived from the captured road images, and the tactile modality information comes from the designed intelligent tire system, containing a low-cost piezoelectric sensor. For accurate road recognition, we propose a multimodal fusion recognition network based on the CNN-transformer architecture. The visual and tactile modalities are fed into modality-specific SE-CNNs, which emphasize valuable input information to obtain weighted features. These features are subsequently input to "bottleneck" based fusion transformer encoders and output the recognition results. We design a fusion feature extractor to enhance the fusion representation capability and improve accuracy. The vehicle field experiments are conducted to build the dataset consisting of four road surfaces, and the results show that the proposed network achieves an accuracy of 99.48% in road recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王凯伦完成签到,获得积分10
刚刚
刚刚
1秒前
嗝嗝完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
Lychee发布了新的文献求助10
1秒前
1秒前
丘比特应助SKD采纳,获得10
1秒前
熠熠完成签到,获得积分10
1秒前
Hommand_藏山完成签到,获得积分10
2秒前
张萌洁发布了新的文献求助10
2秒前
3秒前
3秒前
松果完成签到,获得积分10
3秒前
3秒前
英俊水池完成签到,获得积分10
4秒前
4秒前
4秒前
一个爱吃爱睡的团子完成签到,获得积分10
4秒前
共享精神应助梅TiAmo采纳,获得10
4秒前
内向的台灯完成签到,获得积分10
5秒前
伍秋望完成签到,获得积分10
5秒前
6秒前
HM发布了新的文献求助10
7秒前
7秒前
美好幻灵发布了新的文献求助10
7秒前
7秒前
游舒平发布了新的文献求助10
7秒前
烊烊坨发布了新的文献求助10
7秒前
8秒前
Willow发布了新的文献求助10
9秒前
yznfly应助棋士采纳,获得30
9秒前
心灵美傲薇完成签到 ,获得积分10
9秒前
Xsxbb_zxCG发布了新的文献求助10
10秒前
无心的满天完成签到,获得积分10
10秒前
10秒前
WFLLL应助wen采纳,获得10
10秒前
zoiaii完成签到 ,获得积分10
10秒前
xiaowang完成签到,获得积分10
10秒前
八乙基环辛四烯完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118