CNN‐Transformer for visual‐tactile fusion applied in road recognition of autonomous vehicles

计算机科学 人工智能 传感器融合 计算机视觉 模态(人机交互) 适应性 模式识别(心理学) 生态学 生物
作者
Runwu Shi,Shichun Yang,Yuyi Chen,Rui Wang,Mengyue Zhang,Jiayi Lu,Yaoguang Cao
出处
期刊:Pattern Recognition Letters [Elsevier BV]
卷期号:166: 200-208 被引量:14
标识
DOI:10.1016/j.patrec.2022.11.023
摘要

Reliable autonomous driving requires comprehensive environment perception, among which the road recognition is critical for autonomous vehicles to achieve adaptability, reliability, and safety. Existing equipped sensors such as cameras, LiDAR, and accelerometers have been adopted widely for road recognition. However, single sensor based recognition methods present challenges in balancing high accuracy and adaptability. In this study, we propose a visual-tactile fusion road recognition system for autonomous vehicles. The visual modality is derived from the captured road images, and the tactile modality information comes from the designed intelligent tire system, containing a low-cost piezoelectric sensor. For accurate road recognition, we propose a multimodal fusion recognition network based on the CNN-transformer architecture. The visual and tactile modalities are fed into modality-specific SE-CNNs, which emphasize valuable input information to obtain weighted features. These features are subsequently input to "bottleneck" based fusion transformer encoders and output the recognition results. We design a fusion feature extractor to enhance the fusion representation capability and improve accuracy. The vehicle field experiments are conducted to build the dataset consisting of four road surfaces, and the results show that the proposed network achieves an accuracy of 99.48% in road recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漫漫发布了新的文献求助10
刚刚
开放的从菡关注了科研通微信公众号
刚刚
1秒前
慕青应助lyon采纳,获得10
1秒前
arizaki7发布了新的文献求助10
2秒前
2秒前
UP完成签到,获得积分10
3秒前
善学以致用应助罗大壮采纳,获得10
3秒前
占曼荷发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
8秒前
糊涂涂发布了新的文献求助10
8秒前
8秒前
ding应助xqxqxqxqxqx采纳,获得10
9秒前
9秒前
子车茗应助爱笑的小刺猬采纳,获得30
11秒前
12秒前
小洋完成签到,获得积分20
12秒前
12秒前
arizaki7发布了新的文献求助10
13秒前
粘豆包完成签到,获得积分10
14秒前
Cryer2401完成签到,获得积分10
14秒前
罗大壮发布了新的文献求助10
14秒前
15秒前
木木完成签到,获得积分10
16秒前
占曼荷完成签到,获得积分10
17秒前
18秒前
幸福果汁发布了新的文献求助10
18秒前
北城发布了新的文献求助10
18秒前
一炁完成签到,获得积分10
18秒前
19秒前
songjinyan829发布了新的文献求助10
19秒前
风中小懒虫完成签到,获得积分10
20秒前
粉红豹完成签到,获得积分10
21秒前
21秒前
糊涂的缘分完成签到,获得积分10
21秒前
24秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087467
求助须知:如何正确求助?哪些是违规求助? 4302837
关于积分的说明 13408929
捐赠科研通 4128209
什么是DOI,文献DOI怎么找? 2260744
邀请新用户注册赠送积分活动 1264924
关于科研通互助平台的介绍 1199253