CNN‐Transformer for visual‐tactile fusion applied in road recognition of autonomous vehicles

计算机科学 人工智能 传感器融合 计算机视觉 模态(人机交互) 适应性 模式识别(心理学) 生物 生态学
作者
Runwu Shi,Shichun Yang,Yuyi Chen,Rui Wang,Mengyue Zhang,Jiayi Lu,Yaoguang Cao
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:166: 200-208 被引量:14
标识
DOI:10.1016/j.patrec.2022.11.023
摘要

Reliable autonomous driving requires comprehensive environment perception, among which the road recognition is critical for autonomous vehicles to achieve adaptability, reliability, and safety. Existing equipped sensors such as cameras, LiDAR, and accelerometers have been adopted widely for road recognition. However, single sensor based recognition methods present challenges in balancing high accuracy and adaptability. In this study, we propose a visual-tactile fusion road recognition system for autonomous vehicles. The visual modality is derived from the captured road images, and the tactile modality information comes from the designed intelligent tire system, containing a low-cost piezoelectric sensor. For accurate road recognition, we propose a multimodal fusion recognition network based on the CNN-transformer architecture. The visual and tactile modalities are fed into modality-specific SE-CNNs, which emphasize valuable input information to obtain weighted features. These features are subsequently input to "bottleneck" based fusion transformer encoders and output the recognition results. We design a fusion feature extractor to enhance the fusion representation capability and improve accuracy. The vehicle field experiments are conducted to build the dataset consisting of four road surfaces, and the results show that the proposed network achieves an accuracy of 99.48% in road recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyl发布了新的文献求助10
1秒前
sea2023完成签到,获得积分10
1秒前
杨丽佳发布了新的文献求助10
1秒前
一半哒哒哒完成签到,获得积分20
2秒前
S.D.L发布了新的文献求助10
2秒前
3秒前
科研混子完成签到,获得积分10
4秒前
sissiarno应助树袋熊采纳,获得30
5秒前
5秒前
7秒前
7秒前
三叶草发布了新的文献求助10
8秒前
8秒前
yishenpf完成签到,获得积分10
8秒前
枫花雪发布了新的文献求助10
9秒前
9秒前
kylucky发布了新的文献求助10
9秒前
开放雪曼完成签到,获得积分20
10秒前
10秒前
科研小桶发布了新的文献求助10
10秒前
AnSui发布了新的文献求助10
10秒前
毛豆应助旧城以西采纳,获得10
11秒前
11秒前
吴1完成签到,获得积分10
12秒前
CTT发布了新的文献求助10
12秒前
安若好便是晴完成签到,获得积分10
12秒前
揽星色发布了新的文献求助10
13秒前
大气摩托发布了新的文献求助10
14秒前
14秒前
落寞妙松完成签到,获得积分10
14秒前
飞飞飞完成签到,获得积分20
15秒前
盆浴烟完成签到 ,获得积分10
15秒前
旺阿旺发布了新的文献求助10
15秒前
15秒前
章鱼发布了新的文献求助10
15秒前
123完成签到,获得积分10
15秒前
冷酷的听兰完成签到,获得积分20
16秒前
17秒前
科研小桶完成签到,获得积分10
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308961
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508381
捐赠科研通 2617401
什么是DOI,文献DOI怎么找? 1430069
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649234