Data augmentation: A comprehensive survey of modern approaches

计算机科学 机器学习 数据质量 代表性启发 渲染(计算机图形) 数据科学 人工智能 计算机图形学 数据挖掘 公制(单位) 心理学 运营管理 社会心理学 经济
作者
Alhassan Mumuni,Fuseini Mumuni
出处
期刊:Array [Elsevier BV]
卷期号:16: 100258-100258 被引量:103
标识
DOI:10.1016/j.array.2022.100258
摘要

To ensure good performance, modern machine learning models typically require large amounts of quality annotated data. Meanwhile, the data collection and annotation processes are usually performed manually, and consume a lot of time and resources. The quality and representativeness of curated data for a given task is usually dictated by the natural availability of clean data in the particular domain as well as the level of expertise of developers involved. In many real-world application settings it is often not feasible to obtain sufficient training data. Currently, data augmentation is the most effective way of alleviating this problem. The main goal of data augmentation is to increase the volume, quality and diversity of training data. This paper presents an extensive and thorough review of data augmentation methods applicable in computer vision domains. The focus is on more recent and advanced data augmentation techniques. The surveyed methods include deeply learned augmentation strategies as well as feature-level and meta-learning-based data augmentation techniques. Data synthesis approaches based on realistic 3D graphics modeling, neural rendering, and generative adversarial networks are also covered. Different from previous surveys, we cover a more extensive array of modern techniques and applications. We also compare the performance of several state-of-the-art augmentation methods and present a rigorous discussion of the effectiveness of various techniques in different scenarios of use based on performance results on different datasets and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助义气的咖啡豆采纳,获得30
刚刚
SYLH应助轻松不言采纳,获得10
1秒前
2秒前
2秒前
小超完成签到,获得积分20
4秒前
4秒前
科研通AI5应助曹喳喳采纳,获得30
5秒前
6秒前
6秒前
小希发布了新的文献求助10
7秒前
qia发布了新的文献求助30
7秒前
小二郎应助Ultraviolet采纳,获得10
8秒前
所所应助SuYR采纳,获得10
10秒前
11秒前
轻松不言完成签到,获得积分10
11秒前
12秒前
李克杨完成签到,获得积分10
13秒前
斯文败类应助沉静的曼荷采纳,获得10
13秒前
无奈敏完成签到,获得积分10
13秒前
左手骑车发布了新的文献求助10
14秒前
自由香魔发布了新的文献求助10
16秒前
16秒前
高兴的店员完成签到,获得积分10
19秒前
19秒前
19秒前
22秒前
果粒橙完成签到,获得积分10
22秒前
23秒前
SciGPT应助TMUEH_FCL采纳,获得10
23秒前
zxy发布了新的文献求助10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
25秒前
图图应助科研通管家采纳,获得100
25秒前
痴情的博超应助艾科研采纳,获得10
26秒前
SeasonRain完成签到,获得积分10
26秒前
1226813885应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792