A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method

污染 污染物 重金属 环境科学 相似性(几何) 农业 土壤污染 自然(考古学) 污染 环境工程 土壤水分 环境化学 生态学 土壤科学 地理 计算机科学 化学 生物 考古 图像(数学) 人工智能
作者
Feng Wang,Lili Huo,Yue Li,Lina Wu,Yanqiu Zhang,Guoliang Shi,Yi An
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:858: 160065-160065 被引量:20
标识
DOI:10.1016/j.scitotenv.2022.160065
摘要

Soil heavy metal contamination was a global environmental issue that posed adverse impacts on ecological and human health risks. The controlling of soil heavy metal is mainly focused on the emission source and pipe-end treatment, less is known about the intermediate controlling process. The migration route of heavy metals exhibited the spatial evolution of pollutants from the sources to the pipe-end, which provided the more reasonable location for the target-oriented treatment of soil heavy metal. Here, we proposed a new view of heavy metal similarity, which quantitatively expressed how closely of the contaminations between the study area and the test areas. We found that the similarity of different heavy metals was unequally distributed across locations that were related with five main sources, namely agricultural activities, natural sources, traffic emissions, industrial activities, and other sources. Based on the similarity, a state-of-the-art machine learning method was applied to delineate the migration route of soil heavy metals. Thereinto, As was concentrated around livestock farms, and its migration route was close to the water system. Cd migration route was over-dispersed in the areas where located mine fields and chemical plants. Migration routes of Hg and Pb were along rivers, which were related to agricultural activities and natural sources. Overall, the perspective on similarity and migration routes provided theoretical basis and method to alleviate soil heavy metal pollution at regional scale and can be extended across largescale regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性吐司完成签到 ,获得积分10
1秒前
1秒前
陶醉的斓发布了新的文献求助20
7秒前
9秒前
10秒前
TYM发布了新的文献求助10
14秒前
15秒前
天天快乐应助TYM采纳,获得10
20秒前
wanci应助没心情Q采纳,获得10
20秒前
自由的听白完成签到,获得积分10
24秒前
24秒前
SYQ发布了新的文献求助10
28秒前
32秒前
34秒前
高挑的雪糕完成签到 ,获得积分20
34秒前
37秒前
37秒前
LQ发布了新的文献求助30
40秒前
41秒前
42秒前
大模型应助飞飞采纳,获得10
44秒前
44秒前
Orange应助花羽采纳,获得10
47秒前
49秒前
49秒前
51秒前
52秒前
小李发布了新的文献求助10
53秒前
55秒前
57秒前
58秒前
HuangMddd发布了新的文献求助10
58秒前
李健应助满意的不二采纳,获得10
59秒前
科目三应助哒布6采纳,获得10
1分钟前
充电宝应助可乐采纳,获得10
1分钟前
花羽发布了新的文献求助10
1分钟前
1分钟前
Yee发布了新的文献求助10
1分钟前
没心情Q发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869216
求助须知:如何正确求助?哪些是违规求助? 6449460
关于积分的说明 15660496
捐赠科研通 4984990
什么是DOI,文献DOI怎么找? 2688170
邀请新用户注册赠送积分活动 1630683
关于科研通互助平台的介绍 1588692