Heterogeneous graph convolution based on In-domain Self-supervision for Multimodal Sentiment Analysis

计算机科学 利用 图形 情绪分析 卷积(计算机科学) 领域(数学分析) 领域(数学) 领域知识 机器学习 人工智能 理论计算机科学 模式识别(心理学) 数学 数学分析 人工神经网络 计算机安全 纯数学
作者
Yufei Zeng,Zhixin Li,Zhenjun Tang,Zhenbin Chen,Huifang Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 119240-119240 被引量:27
标识
DOI:10.1016/j.eswa.2022.119240
摘要

The inability to fully exploit domain-specific knowledge and the lack of an effective integration method have been the difficulties and focus of multimodal sentiment analysis. In this paper, we propose heterogeneous graph convolution with in-domain self-supervised multi-task learning for multimodal sentiment analysis (HIS-MSA) to solve these problems. Firstly, HIS-MSA carries out the second pre-trained with different self-supervised training strategies to fully mine the unique knowledge of the in-domain corpus, and give BERT the awareness of professional field. Secondly, HIS-MSA uses heterogeneous graph, which is good at integrating heterogeneous knowledge, to fuse feature from multiple sources. Finally, a unimodal label generation module is used to jointly guide multimodal tasks and unimodal tasks to balance independent and complementary information between the modalities. We conducted experiments on the datasets MOSI and MOSEI, which have 2199 and 23454 video segments respectively. The results show an average improvement of approximately 1.5 points in all metrics compared to the current state-of-the-art model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
李爱国应助LiBo采纳,获得10
1秒前
FashionBoy应助健忘的飞雪采纳,获得10
1秒前
3秒前
3秒前
太阳发布了新的文献求助30
4秒前
DrZ发布了新的文献求助10
5秒前
6秒前
7秒前
9秒前
9秒前
lyy发布了新的文献求助10
9秒前
打打应助解惑采纳,获得10
11秒前
11秒前
ding应助大学生采纳,获得10
13秒前
懒羊羊发布了新的文献求助10
13秒前
付佳佳发布了新的文献求助10
14秒前
mjn404发布了新的文献求助10
14秒前
山乞凡完成签到 ,获得积分10
15秒前
赘婿应助guri采纳,获得30
15秒前
15秒前
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
liuUU应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
17秒前
十字丝应助科研通管家采纳,获得30
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424