Machine Learning Applications in Internet-of-Drones: Systematic Review, Recent Deployments, and Open Issues

计算机科学 无人机 互连性 开放式研究 软件部署 人工智能 计算机安全 风险分析(工程) 数据科学 万维网 软件工程 医学 遗传学 生物
作者
Arash Heidari,Nima Jafari Navimipour,Mehmet Ünal,Guodao Zhang
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (12): 1-45 被引量:65
标识
DOI:10.1145/3571728
摘要

Deep Learning (DL) and Machine Learning (ML) are effectively utilized in various complicated challenges in healthcare, industry, and academia. The Internet of Drones (IoD) has lately cropped up due to high adjustability to a broad range of unpredictable circumstances. In addition, Unmanned Aerial Vehicles (UAVs) could be utilized efficiently in a multitude of scenarios, including rescue missions and search, farming, mission-critical services, surveillance systems, and so on, owing to technical and realistic benefits such as low movement, the capacity to lengthen wireless coverage zones, and the ability to attain places unreachable to human beings. In many studies, IoD and UAV are utilized interchangeably. Besides, drones enhance the efficiency aspects of various network topologies, including delay, throughput, interconnectivity, and dependability. Nonetheless, the deployment of drone systems raises various challenges relating to the inherent unpredictability of the wireless medium, the high mobility degrees, and the battery life that could result in rapid topological changes. In this paper, the IoD is originally explained in terms of potential applications and comparative operational scenarios. Then, we classify ML in the IoD-UAV world according to its applications, including resource management, surveillance and monitoring, object detection, power control, energy management, mobility management, and security management. This research aims to supply the readers with a better understanding of (1) the fundamentals of IoD/UAV, (2) the most recent developments and breakthroughs in this field, (3) the benefits and drawbacks of existing methods, and (4) areas that need further investigation and consideration. The results suggest that the Convolutional Neural Networks (CNN) method is the most often employed ML method in publications. According to research, most papers are on resource and mobility management. Most articles have focused on enhancing only one parameter, with the accuracy parameter receiving the most attention. Also, Python is the most commonly used language in papers, accounting for 90% of the time. Also, in 2021, it has the most papers published.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
祖尔风发布了新的文献求助10
2秒前
WW发布了新的文献求助10
2秒前
2秒前
朴实寻真发布了新的文献求助10
3秒前
aaa完成签到,获得积分10
3秒前
XLXY发布了新的文献求助10
5秒前
6秒前
8秒前
ygx发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI2S应助文儿采纳,获得10
10秒前
马佳凯发布了新的文献求助10
10秒前
11秒前
秋半梦应助部川苦茶采纳,获得10
12秒前
祖尔风完成签到,获得积分10
12秒前
热心市民小张完成签到,获得积分10
14秒前
彭于晏应助calmxp采纳,获得10
14秒前
艳艳子发布了新的文献求助10
14秒前
海的声音发布了新的文献求助10
15秒前
慕青应助宏hong采纳,获得10
15秒前
16秒前
小羊完成签到,获得积分10
16秒前
马佳凯完成签到,获得积分10
16秒前
aaa发布了新的文献求助10
18秒前
JIU夭发布了新的文献求助10
18秒前
怪诞完成签到 ,获得积分10
18秒前
科研通AI2S应助Yu采纳,获得10
19秒前
22秒前
ha哈完成签到,获得积分20
24秒前
李健应助JIU夭采纳,获得10
24秒前
朴实寻真完成签到,获得积分10
24秒前
上官若男应助JIU夭采纳,获得10
24秒前
宇文远锋应助JIU夭采纳,获得10
24秒前
希望天下0贩的0应助JIU夭采纳,获得10
24秒前
科目三应助JIU夭采纳,获得10
24秒前
华仔应助JIU夭采纳,获得10
24秒前
大模型应助JIU夭采纳,获得10
24秒前
iNk应助JIU夭采纳,获得10
24秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207