Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma

比例危险模型 肺癌 肿瘤科 生物 腺癌 细胞周期 癌症 癌症研究 内科学 医学
作者
Kui Cao,Xiaodong Ling,Xiangyu Jiang,Jianqun Ma,Jinhong Zhu
出处
期刊:Respiratory Research [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12931-022-02226-z
摘要

Abstract Background Ubiquitin-conjugating enzyme E2 T (UBE2T) is a potential oncogene. However, Pan-cancer analyses of the functional, prognostic and predictive implications of this gene are lacking. Methods We first analyzed UBE2T across 33 tumor types in The Cancer Genome Atlas (TCGA) project. We investigated the expression level of UBE2T and its effect on prognosis using the TCGA database. The correlation between UBE2T and cell cycle in pan-cancer was investigated using the single-cell sequencing data in Cancer Single-cell State Atlas (CancerSEA) database. The Weighted Gene Co-expression Network analysis (WGCNA), Univariate Cox and Least absolute shrinkage and selection operator (LASSO) Cox regression models, and receiver operating characteristic (ROC) were applied to assess the prognostic impact of UBE2T-related cell cycle genes (UrCCGs). Furthermore, the consensus clustering (CC) method was adopted to divide TCGA-lung adenocarcinoma (LUAD) patients into subgroups based on UrCCGs. Prognosis, molecular characteristics, and the immune panorama of subgroups were analyzed using Single-sample Gene Set Enrichment Analysis (ssGSEA). Results derived from TCGA-LUAD patients were validated in International Cancer Genome Consortium (ICGC)-LUAD data. Results UBE2T is highly expressed and is a prognostic risk factor in most tumors. CancerSEA database analysis revealed that UBE2T was positively associated with the cell cycle in various cancers(r > 0.60, p < 0.001). The risk signature of UrCCGs can reliably predict the prognosis of LUAD (AUC 1 year = 0.720, AUC 3 year = 0.700, AUC 5 year = 0.630). The CC method classified the TCGA-LUAD cohort into 4 UrCCG subtypes (G1–G4). Kaplan–Meier survival analysis demonstrated that G2 and G4 subtypes had worse survival than G3 (Log-rank test P TCGA training set < 0.001, P ICGC validation set < 0.001). A comprehensive analysis of immune infiltrates, immune checkpoints, and immunogenic cell death modulators unveiled different immune landscapes for the four subtypes. High immunophenoscore in G3 and G4 tumors suggested that these two subtypes were immunologically “hot,” tending to respond to immunotherapy compared to G2 subtypes (p < 0.001). Conclusions UBE2T is a critical oncogene in many cancers. Moreover, UrCCG classified the LUAD cohort into four subgroups with significantly different survival, molecular features, immune infiltrates, and immunotherapy responses. UBE2T may be a therapeutic target and predictor of prognosis and immunotherapy sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助糊涂的胡采纳,获得10
1秒前
LeichterL发布了新的文献求助10
4秒前
4秒前
lhy完成签到,获得积分10
7秒前
妙漉完成签到,获得积分10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
典雅问寒应助科研通管家采纳,获得30
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
bkagyin应助重要的问旋采纳,获得10
12秒前
12秒前
鼠鼠完成签到 ,获得积分10
13秒前
仁爱的谷南完成签到,获得积分10
14秒前
14秒前
weixiaoyu发布了新的文献求助10
15秒前
草壁米完成签到,获得积分10
15秒前
化学发布了新的文献求助10
18秒前
易笙完成签到,获得积分10
19秒前
xiaoze发布了新的文献求助10
20秒前
浩多多完成签到,获得积分10
21秒前
24秒前
xiaoze完成签到,获得积分10
26秒前
27秒前
幸福大白发布了新的文献求助10
27秒前
27秒前
一只渣狗完成签到,获得积分10
28秒前
生动映波发布了新的文献求助10
29秒前
30秒前
小二郎应助autumn采纳,获得10
30秒前
30秒前
Suriel发布了新的文献求助10
33秒前
湖以发布了新的文献求助10
33秒前
tt完成签到 ,获得积分10
33秒前
锌小子发布了新的文献求助10
33秒前
欣喜威发布了新的文献求助10
34秒前
ywayw完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183