神经保护
TLR4型
小胶质细胞
缺血
信号转导
受体
生物
神经科学
药理学
下调和上调
细胞生物学
医学
内科学
炎症
免疫学
生物化学
基因
作者
Liang Liu,Tian-Ce Xu,Zi‐Ai Zhao,Nannan Zhang,Jing Li,Hui‐Sheng Chen
标识
DOI:10.1007/s12035-022-03122-9
摘要
In microglia, Toll-like receptor 4 (TLR4) is well known to contribute to neuroinflammatory responses following brain ischemia. TLR4 is also expressed in neurons and can mediate the conduction of calcium (Ca2+) influx, but the mechanistic link between neuronal TLR4 signaling and brain ischemic injury is still poorly understood. Here, primary neuronal cell cultures from TLR4 knockout mice and mice with conditional TLR4 knockout in glutamatergic neurons (TLR4cKO) were used to establish ischemic models in vitro and in vivo, respectively. We found that deleting TLR4 would reduce the neuronal death and intracellular Ca2+ increasement induced by oxygen and glucose deprivation (OGD) or lipopolysaccharide treatment. Infarct volume and functional deficits were also alleviated in TLR4cKO mice following cerebral ischemia/reperfusion (I/R). Furthermore, TLR4 and N-methyl-D-aspartate receptor subunit 2B (NMDAR2B) were colocalized in neurons. Deletion of TLR4 in neurons rescued the upregulation of phosphorylated NMDAR2B induced by ischemia via Src kinase in vitro and in vivo. Downstream of NMDAR2B signaling, the interaction of neuronal nitric oxide synthase (nNOS) with postsynaptic density protein-95 (PSD-95) was also disrupted in TLR4cKO mice following cerebral I/R. Taken together, our results demonstrate a novel molecular neuronal pathway in which TLR4 signaling in neurons plays a crucial role in neuronal death and provide a new target for neuroprotection after ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI