Efficacy of a machine learning-based approach in predicting neurological prognosis of cervical spinal cord injury patients following urgent surgery within 24 h after injury

医学 脊髓损伤 逻辑回归 髓内棒 外科 脊髓 物理疗法 麻醉 内科学 精神科
作者
Tomoaki Shimizu,Kota Suda,Satoshi Maki,Masao Koda,Satoko Matsumoto Harmon,Miki Komatsu,Masahiro Ota,Hiroki Ushirozako,Akio Minami,Masahiko Takahata,Norimasa Iwasaki,Hiroshi Takahashi,Masashi Yamazaki
出处
期刊:Journal of Clinical Neuroscience [Elsevier BV]
卷期号:107: 150-156 被引量:9
标识
DOI:10.1016/j.jocn.2022.11.003
摘要

We aimed to develop a machine learning (ML) model for predicting the neurological outcomes of cervical spinal cord injury (CSCI). We retrospectively analyzed 135 patients with CSCI who underwent surgery within 24 h after injury. Patients were assessed with the American Spinal Injury Association Impairment Scale (AIS; grades A to E) 6 months after injury. A total of 34 features extracted from demographic variables, surgical factors, laboratory variables, neurological status, and radiological findings were analyzed. The ML model was created using Light GBM, XGBoost, and CatBoost. We evaluated Shapley Additive Explanations (SHAP) values to determine the variables that contributed most to the prediction models. We constructed multiclass prediction models for the five AIS grades and binary classification models to predict more than one-grade improvement in AIS 6 months after injury. Of the ML models used, CatBoost showed the highest accuracy (0.800) for the prediction of AIS grade and the highest AUC (0.90) for predicting improvement in AIS. AIS grade at admission, intramedullary hemorrhage, longitudinal extent of intramedullary T2 hyperintensity, and HbA1c were identified as important features for these prediction models. The ML models successfully predicted neurological outcomes 6 months after injury following urgent surgery in patients with CSCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tzy完成签到,获得积分10
刚刚
刚刚
replay完成签到,获得积分10
1秒前
SciGPT应助超级冰露采纳,获得10
2秒前
2秒前
2秒前
2秒前
NJP完成签到,获得积分10
3秒前
细腻烙发布了新的文献求助10
4秒前
Ww发布了新的文献求助10
4秒前
乐天林完成签到 ,获得积分10
4秒前
5秒前
minggalaxy007发布了新的文献求助10
5秒前
orixero应助JIE采纳,获得10
5秒前
6秒前
8秒前
zouyangmingjia完成签到,获得积分10
12秒前
13秒前
深情安青应助长木木采纳,获得10
13秒前
13秒前
maguodrgon应助John采纳,获得10
13秒前
健忘的小虾米完成签到,获得积分10
13秒前
Yh完成签到,获得积分10
14秒前
完美的友蕊应助lilili采纳,获得10
15秒前
难受的难受完成签到,获得积分10
17秒前
可爱的函函应助趙途嘵生采纳,获得30
17秒前
JIE发布了新的文献求助10
18秒前
WW完成签到 ,获得积分10
18秒前
19秒前
时尚战斗机应助樊忘幽采纳,获得10
19秒前
雨香发布了新的文献求助10
19秒前
axinhuang完成签到,获得积分10
20秒前
清爽达完成签到 ,获得积分10
20秒前
完美的友蕊应助小沈采纳,获得10
20秒前
Ningxin完成签到,获得积分10
20秒前
dsw完成签到,获得积分20
21秒前
合适的猎豹完成签到,获得积分10
23秒前
不买版权你出什么成果完成签到 ,获得积分10
23秒前
云墨完成签到 ,获得积分10
23秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296