Nanometer-Mesa Inverted-Pyramid Photonic Crystals for Thin Silicon Solar Cells

材料科学 光电子学 薄脆饼 光电流 硅光子学 光伏 吸收(声学) 等离子太阳电池 光学 混合硅激光器 晶体硅 单晶硅 光伏系统 物理 生态学 复合材料 生物
作者
Sara M. Almenabawy,Yibo Zhang,Andrew G. Flood,Rajiv Prinja,Nazir P. Kherani
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (11): 13808-13816 被引量:9
标识
DOI:10.1021/acsaem.2c02437
摘要

The usage of ultrathin flexible silicon foil can further extend the functionality of silicon and emerging silicon-based tandem solar cells particularly in building and vehicle-integrated photovoltaics where high-efficiency, lightweight, and flexible solar panels are highly desired. However, silicon's relatively weak optical absorption coefficient especially in the near infrared (NIR) region limits its optoelectronic applications with a reduced wafer thickness. Herein, we seek to overcome this limitation by exploring the wave interference phenomenon for effective absorption of NIR light in ultrathin silicon. Particularly, inverted pyramid photonic crystals (PhCs) with nano–micrometer-scale feature sizes are carved directly on silicon. Detailed experimental and theoretical studies are presented by systematically examining the optical properties of PhC-integrated thin silicon substrates (down to a 10 μm thickness). The corresponding maximum photocurrent density for a thin absorber is projected and compared with that predicted by Lambertian's limit. In contrast to traditionally configured microscale inverse pyramids, we show that a small mesa width is critical to achieving high optical performance for a wave-interference-based absorption enhancement. Mesa widths as small as 35 nm are realized over a large wafer-scale fabrication using facile techniques. The optical performance of 10 μm silicon indicates that an ideal photocurrent density approaching 40 mA/cm2 is feasible. This study indicates that photonic crystals provide strong wave interference in ultrathin silicon, and in particular, we observe high optical absorption even after removing more than 90% of the silicon from conventional "thick" Si wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助鱼猫采纳,获得10
刚刚
共享精神应助简单又夏采纳,获得10
1秒前
1秒前
华仔应助lllooo采纳,获得10
2秒前
xkx101完成签到,获得积分10
3秒前
orixero应助沐风采纳,获得10
3秒前
T_KYG发布了新的文献求助10
4秒前
5秒前
好大的晒发布了新的文献求助10
5秒前
浮游应助st采纳,获得10
6秒前
浮游应助st采纳,获得10
6秒前
Jasper应助危机的雍采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
FashionBoy应助icey采纳,获得10
8秒前
桐桐应助Rgly采纳,获得10
9秒前
Lucas应助子清采纳,获得10
9秒前
要减肥的书蕾关注了科研通微信公众号
9秒前
Akim应助无量采纳,获得10
9秒前
10秒前
华仔应助蘑菇腿采纳,获得10
11秒前
11秒前
香蕉觅云应助TiAmo采纳,获得10
11秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得100
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
PPP完成签到,获得积分10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424545
求助须知:如何正确求助?哪些是违规求助? 4538904
关于积分的说明 14164157
捐赠科研通 4455851
什么是DOI,文献DOI怎么找? 2443924
邀请新用户注册赠送积分活动 1435060
关于科研通互助平台的介绍 1412438