The cerebellum contributes to prediction error coding in reinforcement learning in humans

神经科学 小脑 心理学 前脑 中脑 纹状体 扣带回前部 认知 中枢神经系统 多巴胺
作者
Dana M. Huvermann,Adam M. Berlijn,Andreas Thieme,Friedrich Erdlenbruch,Stefan Jun Groiss,Andreas Deistung,Manfred Mittelstaedt,Elke Wondzinski,H. Sievers,Benedikt Frank,Sophia Göricke,Michael Gliem,Martin Köhrmann,Mario Siebler,Alfons Schnitzler,Christian Bellebaum,Martina Minnerop,Dagmar Timmann,Jutta Peterburs
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e1972242025-e1972242025
标识
DOI:10.1523/jneurosci.1972-24.2025
摘要

Recent rodent data suggest that the cerebellum – a region typically associated with processing sensory prediction errors (PEs) – also processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as striatum and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans. First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested. Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female), thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact with only minor changes in behavioural flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients with cerebellar stroke, and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents. Significance statement While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain, recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the cerebellum is necessary for RL-PE coding in the forebrain.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助25486采纳,获得10
刚刚
Maryam完成签到,获得积分20
1秒前
sky完成签到,获得积分10
2秒前
606发布了新的文献求助10
4秒前
程昱完成签到 ,获得积分10
6秒前
友好傲白完成签到,获得积分10
9秒前
xlanister完成签到,获得积分10
12秒前
14秒前
15秒前
qaz完成签到 ,获得积分10
18秒前
粥粥完成签到,获得积分0
18秒前
ycyang发布了新的文献求助30
19秒前
XS_QI发布了新的文献求助10
19秒前
606完成签到,获得积分10
20秒前
科研通AI6.2应助yj1506837246采纳,获得10
21秒前
黄靓靓完成签到,获得积分20
21秒前
哲欣发布了新的文献求助10
22秒前
23秒前
别止完成签到,获得积分10
25秒前
tting完成签到 ,获得积分10
25秒前
lulu完成签到 ,获得积分10
25秒前
时生完成签到 ,获得积分10
27秒前
嘿嘿应助ycyang采纳,获得10
29秒前
上官若男应助Dr.c采纳,获得10
30秒前
包佳梁完成签到,获得积分10
31秒前
啧啧完成签到 ,获得积分10
32秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
33秒前
34秒前
34秒前
田様应助科研通管家采纳,获得10
34秒前
Orange应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
烟花应助科研通管家采纳,获得10
34秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969