Two inflammation-related genes model could predict risk in prognosis of patients with lung adenocarcinoma

医学 腺癌 炎症 内科学 肿瘤科 风险模型 癌症 风险分析(工程)
作者
Wei Yang,Junqi Long,Gege Li,Jingzehua Xu,Yuanfeng Chen,Shijie Zhou,Zhidong Liu,Shuangtao Zhao
出处
期刊:Clinical & Translational Oncology [Springer Science+Business Media]
标识
DOI:10.1007/s12094-025-03861-w
摘要

In lung adenocarcinoma (LUAD), there remains a dearth of efficacious diagnostic studies including some inflammation-related genes to identify the LUAD subgroups with different clinical outcomes. First, two molecular subgroups were identified with mRNA expression profiling from The Cancer Genome Atlas (TCGA) by K-means algorithm. Gene set enrichment analysis (GSEA), immune infiltration, and Gene set variation analysis (GSVA) were applied to explore the biological functions between these two subtypes. Then, univariate and multivariate Cox regression analyses were selected to evaluate the independence of these subtypes in LUAD. Next, lasso regression was applied to identify the high-precision mRNAs to predict the subtype with favorable prognosis. Finally, a two-mRNA model was constructed using the method of multivariate Cox regression, and the effectiveness of the model was validated in a training set (n = 310) and three independent validation sets (n = 1. Comprehensive genomic analysis was conducted of 310 LUAD samples and identified two subtypes associated with molecular classification and clinical prognosis: immune-enriched and non-immune-enriched subgroup. Then, a new model was developed based on two mRNAs (MS4A1 and MS4A2) in TCGA dataset and divided these LUAD patients into high-risk and low-risk subgroup with significantly different prognosis (HR = 1.644 (95% CI 1.153-2.342); p < 0.01), which was independence of the other clinical factors (p < 0.05). In addition, this new model had similar predictive effects in another three independent validation sets (HR > 1.445, p < 0.01). We constructed a robust model for predicting the risk of LUAD patients and evaluated the clinical outcomes independently with strong predictive power. This model stands as a reliable guide for implementing personalized treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Magali应助细腻的机器猫采纳,获得30
6秒前
mojomars完成签到,获得积分10
6秒前
jacksam发布了新的文献求助10
8秒前
握瑾怀瑜完成签到 ,获得积分0
8秒前
沉默的冬寒完成签到 ,获得积分10
9秒前
鲲鹏完成签到 ,获得积分10
10秒前
MoodMeed完成签到,获得积分10
12秒前
余味完成签到,获得积分10
13秒前
kohu完成签到,获得积分10
13秒前
自由的冰夏完成签到,获得积分10
14秒前
16秒前
细腻的机器猫完成签到,获得积分20
19秒前
chenyan完成签到,获得积分10
19秒前
陈秋完成签到,获得积分10
20秒前
24秒前
Star完成签到,获得积分10
26秒前
请叫我风吹麦浪应助陈秋采纳,获得10
28秒前
小心翼翼发布了新的文献求助10
29秒前
老李完成签到,获得积分10
31秒前
32秒前
王翎力完成签到,获得积分10
32秒前
游艺完成签到 ,获得积分10
34秒前
song完成签到 ,获得积分10
35秒前
唐明穆完成签到 ,获得积分10
36秒前
Dr.Lee完成签到 ,获得积分10
36秒前
tys0713104发布了新的文献求助10
36秒前
大个应助jacksam采纳,获得10
41秒前
小心翼翼完成签到,获得积分10
43秒前
月亮与六便士完成签到 ,获得积分10
44秒前
脑洞疼应助tys0713104采纳,获得10
44秒前
叶子完成签到 ,获得积分10
45秒前
穆一手完成签到 ,获得积分10
48秒前
葱饼完成签到 ,获得积分10
49秒前
风秋杨完成签到 ,获得积分0
49秒前
ttxxcdx完成签到,获得积分10
51秒前
i2stay完成签到,获得积分10
53秒前
Magali应助科研疯狗采纳,获得30
53秒前
mojito完成签到 ,获得积分10
54秒前
make217完成签到 ,获得积分10
55秒前
Huibo完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729162
求助须知:如何正确求助?哪些是违规求助? 3274353
关于积分的说明 9984941
捐赠科研通 2989546
什么是DOI,文献DOI怎么找? 1640601
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748145