钒
阴极
材料科学
锌
离子
冶金
工程物理
电气工程
工程类
化学
有机化学
作者
Huijuan Zhang,Yiming Tao,Haixiang Luo,Yuhua Xue
标识
DOI:10.1002/chem.202500219
摘要
Aqueous zinc-ion batteries (AZIBs) are promising for energy storage due to their high safety, low cost, and environmental friendliness. Vanadium-based materials, including vanadium oxides, vanadium sulfides, vanadate, and vanadium carbon composites, have gained attention for their diverse crystal structures, multiple oxidation states, and high theoretical capacities. This review summarizes recent advances in vanadium-based cathodes, focusing on structural design and modification strategies, such as amorphous structures, defect engineering, conductive carbon matrices, and cation pre-intercalation to enhance Zn2+ storage. Vanadium oxides and vanadium sulfides offer unique ion diffusion advantages, while vanadate and vanadium carbon composites improve conductivity and stability. Vanadate is highlighted as a critical approach to reduce electrostatic repulsion and facilitate Zn2+ storage. Vanadium carbon composites (V-MOF derivations, vanadium oxides @ carbon, combined with graphene and conductive polymer) have unique advantages in terms of conductivity, ion diffusion, and structural stability. Emerging materials like VN, VOPO₄ and V2CTx are also discussed. Future directions include multi-guest doping, anion pre-intercalation, and advanced carbon integration. This review aims to guide the development of high-performance AZIBs and inspire future research in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI