Development of a deep learning radiomics model combining lumbar CT, multi-sequence MRI, and clinical data to predict high-risk cage subsidence after lumbar fusion: a retrospective multicenter study

腰椎 医学 序列(生物学) 脊柱融合术 回顾性队列研究 融合 多中心研究 放射科 外科 语言学 遗传学 生物 哲学 随机对照试验
作者
Congying Zou,Ruiyuan Chen,Biao Wang,Fei Qi,Hongxing Song,Lei Zang
出处
期刊:Biomedical Engineering Online [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12938-025-01355-y
摘要

To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion. This study analyzed preoperative CT and MRI data from 305 patients undergoing lumbar fusion surgery from three centers. Using a deep learning model based on 3D vision transformations, the data were divided the dataset into training (n = 214), validation (n = 61), and test (n = 30) groups. Feature selection was performed using LASSO regression, followed by the development of a logistic regression model. The predictive ability of the model was assessed using various machine learning algorithms, and a combined clinical model was also established. Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, and 1 clinical feature were selected. The combined model demonstrated strong predictive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 for the training, validation, and test groups, respectively. Notably, our model outperformed predictions made by two experienced surgeons. This study developed a robust predictive model that integrates clinical features and imaging data to identify high-risk patients for CS following lumbar fusion. This model has the potential to improve clinical decision-making and reduce the need for revision surgeries, easing the burden on healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ai123456发布了新的文献求助10
1秒前
1秒前
annieduan完成签到 ,获得积分10
1秒前
zhou国兵完成签到,获得积分10
2秒前
代代发布了新的文献求助10
2秒前
3秒前
科研通AI2S应助畅快的汉堡采纳,获得10
3秒前
yihaiqin完成签到,获得积分10
3秒前
3秒前
yx阿聪发布了新的文献求助10
3秒前
ghan完成签到 ,获得积分10
3秒前
chinaproteome发布了新的文献求助10
3秒前
和谐的棉花糖完成签到 ,获得积分20
3秒前
4秒前
4秒前
shuiyshuiy完成签到,获得积分10
4秒前
4秒前
Owen应助狼主采纳,获得10
4秒前
碧蓝阁完成签到,获得积分10
5秒前
任我行发布了新的文献求助10
5秒前
achqx发布了新的文献求助10
6秒前
Katrina杨完成签到,获得积分10
6秒前
认真一斩发布了新的文献求助10
6秒前
脑洞疼应助真实的小伙采纳,获得30
7秒前
畅快老虎应助NIN采纳,获得10
7秒前
8秒前
8秒前
桐桐应助chinaproteome采纳,获得10
9秒前
JessonWu发布了新的文献求助10
10秒前
Lucas应助jyylrl采纳,获得10
10秒前
呼啦啦发布了新的文献求助10
11秒前
碧蓝阁发布了新的文献求助10
11秒前
xyb完成签到,获得积分20
11秒前
Myronhaoyuan完成签到,获得积分10
12秒前
12秒前
科研通AI5应助聪慧的微笑采纳,获得10
13秒前
zlo完成签到,获得积分10
13秒前
uraylong发布了新的文献求助10
13秒前
所所应助Annn采纳,获得10
13秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3723424
求助须知:如何正确求助?哪些是违规求助? 3269139
关于积分的说明 9958578
捐赠科研通 2983574
什么是DOI,文献DOI怎么找? 1636667
邀请新用户注册赠送积分活动 777073
科研通“疑难数据库(出版商)”最低求助积分说明 746806