Thermal ablation (TA) is widely used for clinical treatment of various cancers. However, TA often struggles to efficiently kill tumor cells without injuring adjacent normal tissues/cells, leading to thermo-mediated tumor relapse and metastasis, owing to the immunosuppressive microenvironment surrounding residual tumor cells. In this study, a temperature-sensitive ionic liquid composed of lipoic acid and choline (LACH/PNA) is developed as a multifunctional TA sensitizer to suppress tumor metastasis induced by incomplete microwave ablation. LACH/PNA exhibits a high diffusion coefficient by disrupting the tumor matrix and modulating cancer-associated fibroblasts, thereby facilitating heat and mass transfer in tumors. LACH/PNA demonstrates greater cytotoxicity toward hepatoma cells than on normal hepatocytes with this effect further intensified by thermal treatment. These findings highlight LACH/PNA as a promising multifunctional sensitizer for clinical chemoablation-microwave ablation synergy.