Active-Learning Assisted General Framework for Efficient Parameterization of Force-Fields

力场(虚构) 计算机科学 克里金 探地雷达 高斯过程 领域(数学) 先验与后验 人工智能 机器学习 高斯分布 化学 数学 计算化学 雷达 纯数学 哲学 认识论 电信
作者
Yati,Yash Kokane,Anirban Mondal
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.5c00061
摘要

This work presents an efficient approach to optimizing force field parameters for sulfone molecules using a combination of genetic algorithms (GA) and Gaussian process regression (GPR). Sulfone-based electrolytes are of significant interest in energy storage applications, where accurate modeling of their structural and transport properties is essential. Traditional force field parametrization methods are often computationally expensive and require extensive manual intervention. By integrating GA and GPR, our active learning framework addresses these challenges by achieving optimized parameters in 12 iterations using only 300 data points, significantly outperforming previous attempts requiring thousands of iterations and parameters. We demonstrate the efficiency of our method through a comparison with state-of-the-art techniques, including Bayesian Optimization. The optimized GA-GPR force field was validated against experimental and reference data, including density, viscosity, diffusion coefficients, and surface tension. The results demonstrated excellent agreement between GA-GPR predictions and experimental values, outperforming the widely used OPLS force field. The GA-GPR model accurately captured both bulk and interfacial properties, effectively describing molecular mobility, caging effects, and interfacial arrangements. Furthermore, the transferability of the GA-GPR force field across different temperatures and sulfone structures underscores its robustness and versatility. Our study provides a reliable and transferable force field for sulfone molecules, significantly enhancing the accuracy and efficiency of molecular simulations. This work establishes a strong foundation for future machine learning-driven force field development, applicable to complex molecular systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mahaha完成签到,获得积分10
刚刚
pain豆先生完成签到 ,获得积分10
刚刚
刚刚
mingxin发布了新的文献求助10
刚刚
julia发布了新的文献求助10
刚刚
xingxing发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助5866采纳,获得20
1秒前
captain龙关注了科研通微信公众号
1秒前
裴楷之发布了新的文献求助30
2秒前
景磬发布了新的文献求助10
2秒前
2秒前
2秒前
陶醉的向珊完成签到,获得积分10
2秒前
可爱的函函应助雨点采纳,获得100
3秒前
Peng丶Young完成签到,获得积分10
3秒前
3秒前
自觉的时候完成签到,获得积分20
3秒前
真不错发布了新的文献求助10
4秒前
拉长的沛芹完成签到,获得积分10
4秒前
xcxc完成签到,获得积分10
4秒前
4秒前
斯文败类应助QI采纳,获得10
4秒前
闪闪盼晴发布了新的文献求助10
4秒前
小蘑菇应助我行我素采纳,获得10
4秒前
Qy8240614发布了新的文献求助10
5秒前
hhhblabla应助seven采纳,获得20
5秒前
hhhblabla应助seven采纳,获得20
5秒前
柠曦发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助ArcMayuri采纳,获得10
6秒前
7秒前
chenamy发布了新的文献求助10
7秒前
吴彦祖发布了新的文献求助10
7秒前
7秒前
K513693050发布了新的文献求助10
7秒前
桐桐应助半柚采纳,获得10
7秒前
hjw完成签到,获得积分20
7秒前
隐形忆丹完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513684
求助须知:如何正确求助?哪些是违规求助? 3096044
关于积分的说明 9230299
捐赠科研通 2791134
什么是DOI,文献DOI怎么找? 1531650
邀请新用户注册赠送积分活动 711603
科研通“疑难数据库(出版商)”最低求助积分说明 706879