Active-Learning Assisted General Framework for Efficient Parameterization of Force-Fields

力场(虚构) 计算机科学 克里金 探地雷达 高斯过程 领域(数学) 先验与后验 人工智能 机器学习 高斯分布 化学 数学 计算化学 雷达 纯数学 哲学 认识论 电信
作者
Yati,Yash Kokane,Anirban Mondal
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.5c00061
摘要

This work presents an efficient approach to optimizing force field parameters for sulfone molecules using a combination of genetic algorithms (GA) and Gaussian process regression (GPR). Sulfone-based electrolytes are of significant interest in energy storage applications, where accurate modeling of their structural and transport properties is essential. Traditional force field parametrization methods are often computationally expensive and require extensive manual intervention. By integrating GA and GPR, our active learning framework addresses these challenges by achieving optimized parameters in 12 iterations using only 300 data points, significantly outperforming previous attempts requiring thousands of iterations and parameters. We demonstrate the efficiency of our method through a comparison with state-of-the-art techniques, including Bayesian Optimization. The optimized GA-GPR force field was validated against experimental and reference data, including density, viscosity, diffusion coefficients, and surface tension. The results demonstrated excellent agreement between GA-GPR predictions and experimental values, outperforming the widely used OPLS force field. The GA-GPR model accurately captured both bulk and interfacial properties, effectively describing molecular mobility, caging effects, and interfacial arrangements. Furthermore, the transferability of the GA-GPR force field across different temperatures and sulfone structures underscores its robustness and versatility. Our study provides a reliable and transferable force field for sulfone molecules, significantly enhancing the accuracy and efficiency of molecular simulations. This work establishes a strong foundation for future machine learning-driven force field development, applicable to complex molecular systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_VZG7GZ应助Deadman采纳,获得10
1秒前
研友_8R3XdL发布了新的文献求助10
2秒前
淡淡代玉发布了新的文献求助30
3秒前
小二郎应助霸气以菱采纳,获得10
4秒前
开朗的睫毛膏完成签到,获得积分10
6秒前
君莫笑发布了新的文献求助10
8秒前
ww123完成签到,获得积分10
8秒前
ShenLi完成签到,获得积分10
9秒前
UY完成签到,获得积分10
9秒前
10秒前
ZQ发布了新的文献求助10
10秒前
烟花应助想人陪的语梦采纳,获得10
11秒前
娇气的白卉完成签到,获得积分10
11秒前
领导范儿应助ww123采纳,获得10
13秒前
14秒前
16秒前
16秒前
TZ完成签到 ,获得积分10
17秒前
17秒前
19秒前
小龙完成签到,获得积分10
19秒前
美丽的又菡完成签到,获得积分20
21秒前
Tigher发布了新的文献求助10
22秒前
22秒前
李爱国应助王睿采纳,获得10
22秒前
明亮的代荷完成签到,获得积分10
23秒前
97发布了新的文献求助10
23秒前
23秒前
26秒前
大个应助weiyi采纳,获得10
26秒前
传奇3应助真君山山长采纳,获得10
28秒前
大个应助lijing李静ustc采纳,获得10
29秒前
袁方正发布了新的文献求助10
29秒前
鸭鸭发布了新的文献求助10
30秒前
34秒前
34秒前
xyb关闭了xyb文献求助
36秒前
兴奋电脑完成签到,获得积分10
36秒前
hou完成签到 ,获得积分10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975