Machine learning based age-authentication assisted by chemo-kinetics: Case study of strong-flavor Chinese Baijiu

风味 芳香 食品科学 化学
作者
Qingru Liu,Shouxin Zhang,Lei Zheng,Lian-Jun Meng,Guang-Qian Liu,Ting Yang,Zhen‐Ming Lu,Li‐Juan Chai,Songtao Wang,Jin‐Song Shi,Caihong Shen,Zhenghong Xu
出处
期刊:Food Research International [Elsevier]
卷期号:167: 112594-112594 被引量:14
标识
DOI:10.1016/j.foodres.2023.112594
摘要

The aged Chinese liquor, Baijiu, is highly valued for its superior organoleptic qualities. However, since age-authentication method and aging-mechanism elucidation of Baijiu is still in the exploratory stage, high-quality aged Baijiu is often replaced by lower-quality, less-aged product with fraudulent mislabeling. Authentic high-quality strong-flavor Baijiu was analyzed by gas chromatography-mass spectrometry. Total esters decreased with aging, while acids, alcohols, aldehydes, ketones, terpenes, pyrazines increased. Although concentrations of partial compounds showed non-monotonic profiling during aging, a close positive linear correlation (R2 = 0.7012) of Baijiu Evenness index (0.55–0.59) with aging time was observed, indicating a more balanced composition in aged Baijiu. The reaction quotient (Qc) of each esterification, calculated by the corresponding reactant and product concentration, approached to the corresponding thermodynamic equilibrium constant Kc. This result demonstrated that the spontaneous transformation driven by thermodynamics explained part of the aging compositional profiling. Furthermore, an aging-related feature selection and an age-authentication method were established based on three models combined with five ranking algorithms. Forty-one key features, including thirty-six compound concentrations, four esterification Qc values and the Evenness index were selected out. The age-authentication based on neural network using forty-one input features accurately predicted the age group of Baijiu samples (F1 = 100 %). These findings have deepened understanding of the Baijiu aging mechanism and provided a novel, effective approach for age-authentication of Baijiu and other liquors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助默默含卉采纳,获得10
刚刚
1秒前
66完成签到,获得积分10
1秒前
2秒前
3秒前
Zhang Wei发布了新的文献求助10
5秒前
su得发布了新的文献求助10
6秒前
dandan完成签到,获得积分10
6秒前
8秒前
在水一方应助忐忑的尔容采纳,获得10
8秒前
王谊讴完成签到,获得积分10
9秒前
严剑封发布了新的文献求助10
10秒前
11秒前
朴实的纸飞机完成签到 ,获得积分10
12秒前
guan发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
废洋洋发布了新的文献求助10
15秒前
Zhang Wei完成签到,获得积分20
16秒前
muncy发布了新的文献求助10
17秒前
lujiajia完成签到,获得积分10
17秒前
Desamin发布了新的文献求助10
18秒前
wg发布了新的文献求助10
18秒前
阿莫完成签到,获得积分10
19秒前
小鹅发布了新的文献求助10
19秒前
lujiajia发布了新的文献求助10
20秒前
22秒前
科研通AI2S应助小饼干采纳,获得10
24秒前
DrWang完成签到,获得积分10
27秒前
27秒前
WAY发布了新的文献求助30
28秒前
grell完成签到,获得积分10
28秒前
29秒前
拼搏绿柏完成签到,获得积分10
32秒前
洞两完成签到,获得积分10
33秒前
qiao发布了新的文献求助10
33秒前
脑洞疼应助grell采纳,获得10
34秒前
感动的傥完成签到 ,获得积分10
35秒前
耍酷激光豆完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155953
求助须知:如何正确求助?哪些是违规求助? 2807296
关于积分的说明 7872331
捐赠科研通 2465597
什么是DOI,文献DOI怎么找? 1312272
科研通“疑难数据库(出版商)”最低求助积分说明 630017
版权声明 601905