Machine learning based age-authentication assisted by chemo-kinetics: Case study of strong-flavor Chinese Baijiu

风味 芳香 食品科学 化学
作者
Qingru Liu,Xiaojuan Zhang,Lei Zheng,Lian-Jun Meng,Guang-Qian Liu,Ting Yang,Zhen‐Ming Lu,Li‐Juan Chai,Songtao Wang,Jin‐Song Shi,Caihong Shen,Zhenghong Xu
出处
期刊:Food Research International [Elsevier]
卷期号:167: 112594-112594 被引量:36
标识
DOI:10.1016/j.foodres.2023.112594
摘要

The aged Chinese liquor, Baijiu, is highly valued for its superior organoleptic qualities. However, since age-authentication method and aging-mechanism elucidation of Baijiu is still in the exploratory stage, high-quality aged Baijiu is often replaced by lower-quality, less-aged product with fraudulent mislabeling. Authentic high-quality strong-flavor Baijiu was analyzed by gas chromatography-mass spectrometry. Total esters decreased with aging, while acids, alcohols, aldehydes, ketones, terpenes, pyrazines increased. Although concentrations of partial compounds showed non-monotonic profiling during aging, a close positive linear correlation (R2 = 0.7012) of Baijiu Evenness index (0.55–0.59) with aging time was observed, indicating a more balanced composition in aged Baijiu. The reaction quotient (Qc) of each esterification, calculated by the corresponding reactant and product concentration, approached to the corresponding thermodynamic equilibrium constant Kc. This result demonstrated that the spontaneous transformation driven by thermodynamics explained part of the aging compositional profiling. Furthermore, an aging-related feature selection and an age-authentication method were established based on three models combined with five ranking algorithms. Forty-one key features, including thirty-six compound concentrations, four esterification Qc values and the Evenness index were selected out. The age-authentication based on neural network using forty-one input features accurately predicted the age group of Baijiu samples (F1 = 100 %). These findings have deepened understanding of the Baijiu aging mechanism and provided a novel, effective approach for age-authentication of Baijiu and other liquors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然冬灵发布了新的文献求助10
刚刚
杳杳完成签到 ,获得积分10
刚刚
刚刚
JOUJOU完成签到,获得积分20
1秒前
1秒前
eric888应助mmol采纳,获得200
1秒前
1秒前
刘gugu发布了新的文献求助10
1秒前
orixero应助普外科老白采纳,获得10
2秒前
研友_LkD29n完成签到 ,获得积分10
3秒前
Ava应助逸风望采纳,获得10
3秒前
3秒前
科研通AI6应助小黑采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
JOUJOU发布了新的文献求助10
5秒前
5秒前
Yeshenyue完成签到,获得积分10
5秒前
今后应助从容冷之采纳,获得10
6秒前
congconglyu完成签到,获得积分10
6秒前
大模型应助天真千易采纳,获得10
6秒前
风清扬发布了新的文献求助10
6秒前
天天快乐应助天真千易采纳,获得10
6秒前
负责的皮卡丘应助xiaoting采纳,获得30
6秒前
汉堡包应助天真千易采纳,获得10
7秒前
NexusExplorer应助天真千易采纳,获得10
7秒前
情怀应助天真千易采纳,获得10
7秒前
彭于晏应助天真千易采纳,获得10
7秒前
可爱的函函应助天真千易采纳,获得10
7秒前
打打应助天真千易采纳,获得10
7秒前
赘婿应助天真千易采纳,获得10
7秒前
Jasper应助天真千易采纳,获得30
7秒前
8秒前
orixero应助ruaruaburua采纳,获得10
9秒前
韩梅完成签到,获得积分10
10秒前
哥斯拉发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
老大车完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670