材料科学
光电探测器
光电子学
异质结
红外线的
量子点
胶体
超材料
纳米技术
光学
化学工程
工程类
物理
作者
Raphael Schwanninger,Stefan M. Koepfli,Olesya Yarema,Alexander Dorodnyy,Maksym Yarema,A. Moser,Shadi Nashashibi,Yuriy Fedoryshyn,Vanessa Wood,J. Leuthold
标识
DOI:10.1021/acsami.2c23050
摘要
Efficient and simple-to-fabricate light detectors in the mid infrared (MIR) spectral range are of great importance for various applications in existing and emerging technologies. Here, we demonstrate compact and efficient photodetectors operating at room temperature in a wavelength range of 2710-4250 nm with responsivities as high as 375 and 4 A/W. Key to the high performance is the combination of a sintered colloidal quantum dot (CQD) lead selenide (PbSe) and lead sulfide (PbS) heterojunction photoconductor with a metallic metasurface perfect absorber. The combination of this photoconductor stack with the metallic metasurface perfect absorber provides an overall ∼20-fold increase of the responsivity compared against reference sintered PbSe photoconductors. More precisely, the introduction of a PbSe/PbS heterojunction increases the responsivity by a factor of ∼2 and the metallic metasurface enhances the responsivity by an order of magnitude. The metasurface not only enhances the light-matter interaction but also acts as an electrode to the detector. Furthermore, fabrication of our devices relies on simple and inexpensive methods. This is in contrast to most of the currently available (state-of-the-art) MIR photodetectors that rely on rather expensive as well as nontrivial fabrication technologies that often require cooling for efficient operation.
科研通智能强力驱动
Strongly Powered by AbleSci AI