Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9393-9410 被引量:167
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
WEIXING发布了新的文献求助10
4秒前
化学路人甲关注了科研通微信公众号
4秒前
健忘的夜阑完成签到,获得积分10
4秒前
5秒前
5秒前
薛十七完成签到,获得积分10
5秒前
媛小媛啊发布了新的文献求助10
7秒前
8秒前
BTim完成签到 ,获得积分10
9秒前
10秒前
明明就发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
Jackcaosky完成签到 ,获得积分10
12秒前
掉头发的小白完成签到,获得积分10
12秒前
12秒前
科研战神完成签到,获得积分10
13秒前
火星上云朵完成签到 ,获得积分10
13秒前
儒雅的斑马完成签到,获得积分10
14秒前
赘婿应助lifengxia采纳,获得10
14秒前
风格的好的完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助50
16秒前
16秒前
科研战神发布了新的文献求助10
17秒前
lztong完成签到,获得积分10
17秒前
17秒前
在水一方应助甘特采纳,获得10
17秒前
18秒前
19秒前
KKUMee完成签到,获得积分10
20秒前
20秒前
24秒前
里予关注了科研通微信公众号
24秒前
木木林姐姐完成签到 ,获得积分10
25秒前
26秒前
tl完成签到,获得积分10
26秒前
max发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483