Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9393-9410 被引量:65
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PADAXING完成签到,获得积分20
刚刚
搜集达人应助ZXL采纳,获得10
2秒前
luogan发布了新的文献求助10
3秒前
muriel发布了新的文献求助10
3秒前
在水一方应助mint采纳,获得10
4秒前
4秒前
彭于晏应助杨昊采纳,获得10
6秒前
林读书完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
10秒前
周周完成签到,获得积分10
12秒前
hhhyyyy完成签到,获得积分10
13秒前
klandcy完成签到,获得积分10
14秒前
小七2022发布了新的文献求助30
15秒前
HY发布了新的文献求助10
15秒前
16秒前
韦觅松完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
伽易完成签到,获得积分10
20秒前
高1123完成签到,获得积分10
24秒前
小白菜完成签到,获得积分10
24秒前
何糖完成签到 ,获得积分10
24秒前
whisper发布了新的文献求助10
25秒前
26秒前
泌尿小周完成签到 ,获得积分10
26秒前
miugmiug发布了新的文献求助10
26秒前
26秒前
香蕉觅云应助悠扬采纳,获得10
28秒前
28秒前
车剑锋完成签到,获得积分10
30秒前
30秒前
潇潇微雨发布了新的文献求助10
30秒前
30秒前
不安青牛应助Lin3J采纳,获得10
31秒前
31秒前
31秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462498
求助须知:如何正确求助?哪些是违规求助? 3056032
关于积分的说明 9050314
捐赠科研通 2745649
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696141
邀请新用户注册赠送积分活动 695654