Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9393-9410 被引量:167
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
学术牛完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
秋秋秋发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
基尔霍夫发布了新的文献求助10
1秒前
Aimeee发布了新的文献求助10
2秒前
2秒前
BowieHuang应助朴素的尔云采纳,获得10
2秒前
Ming完成签到,获得积分10
2秒前
coin完成签到,获得积分10
2秒前
2秒前
tian发布了新的文献求助10
2秒前
B2957发布了新的文献求助10
3秒前
刘小源完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
科研冲完成签到,获得积分10
4秒前
pcm发布了新的文献求助10
4秒前
4秒前
富贵发布了新的文献求助10
5秒前
852应助bilin采纳,获得10
5秒前
qian完成签到 ,获得积分10
5秒前
5秒前
小马甲应助阿涛采纳,获得10
5秒前
5秒前
5秒前
6秒前
cyrong发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
zhoumaoyuan发布了新的文献求助10
6秒前
7秒前
tian完成签到,获得积分10
7秒前
风趣的惜天完成签到 ,获得积分10
8秒前
你没事吧完成签到,获得积分10
8秒前
Wind应助bigpluto采纳,获得10
8秒前
8秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581856
求助须知:如何正确求助?哪些是违规求助? 4665999
关于积分的说明 14759982
捐赠科研通 4607956
什么是DOI,文献DOI怎么找? 2528430
邀请新用户注册赠送积分活动 1497713
关于科研通互助平台的介绍 1466585