Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9393-9410 被引量:32
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄朝雪完成签到,获得积分10
刚刚
123发布了新的文献求助10
1秒前
科目三应助天上掉下篇NCS采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助苍狼BH采纳,获得10
1秒前
调皮友易完成签到 ,获得积分10
1秒前
1秒前
科研通AI2S应助鬼鬼的眼睛采纳,获得10
2秒前
2秒前
2秒前
田様应助云木采纳,获得10
3秒前
cjy123发布了新的文献求助10
3秒前
饭饱饱完成签到,获得积分10
3秒前
超帅涔发布了新的文献求助10
3秒前
不老发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
尊敬雨双发布了新的文献求助10
4秒前
Fitical发布了新的文献求助10
5秒前
5秒前
调皮友易关注了科研通微信公众号
5秒前
毛毛发布了新的文献求助10
5秒前
5秒前
今后应助彭于晏采纳,获得10
5秒前
6秒前
crazy发布了新的文献求助10
6秒前
wangsai完成签到,获得积分10
6秒前
ttmm石墨烯发布了新的文献求助10
7秒前
wb发布了新的文献求助10
7秒前
7秒前
汉堡包应助吃面条放辣椒采纳,获得10
8秒前
贪玩菲音发布了新的文献求助10
8秒前
yue发布了新的文献求助10
9秒前
Phosphene应助炙热的安柏采纳,获得10
9秒前
科研通AI2S应助向阳采纳,获得10
9秒前
9秒前
霍凡白发布了新的文献求助10
9秒前
lzcnextdoor发布了新的文献求助10
9秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074443
求助须知:如何正确求助?哪些是违规求助? 2727939
关于积分的说明 7501419
捐赠科研通 2376049
什么是DOI,文献DOI怎么找? 1259754
科研通“疑难数据库(出版商)”最低求助积分说明 610754
版权声明 597081