Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (8): 9393-9410 被引量:115
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业完成签到 ,获得积分10
1秒前
2秒前
科研通AI5应助蒙蒙细雨采纳,获得10
4秒前
华仔应助sunnyxxq采纳,获得10
5秒前
5秒前
imzmy完成签到,获得积分10
7秒前
李爱国应助jummy采纳,获得10
9秒前
Freya完成签到 ,获得积分10
10秒前
11秒前
11秒前
wangxinji完成签到,获得积分10
11秒前
带虾的烧麦完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
小明应助科研通管家采纳,获得20
14秒前
田様应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得30
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
笑点低小夏完成签到,获得积分10
15秒前
夕兮发布了新的文献求助20
17秒前
17秒前
小蜗牛完成签到 ,获得积分10
23秒前
jummy发布了新的文献求助10
23秒前
小二郎应助Maylling采纳,获得10
26秒前
27秒前
冰蓝完成签到 ,获得积分10
29秒前
29秒前
刘乐艺发布了新的文献求助10
29秒前
General完成签到 ,获得积分10
29秒前
JerryZ发布了新的文献求助10
30秒前
Inevitable发布了新的文献求助10
31秒前
亚男66完成签到,获得积分20
31秒前
33秒前
litpand发布了新的文献求助10
33秒前
ding应助左幻竹采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833