清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Attention Spiking Neural Networks

尖峰神经网络 计算机科学 人工智能 杠杆(统计) 块(置换群论) 模式识别(心理学) MNIST数据库 人工神经网络 机器学习 几何学 数学
作者
Man Yao,Guangshe Zhao,Hengyu Zhang,Yifan Hu,Lei Deng,Yonghong Tian,Bo Xu,Guoqi Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (8): 9393-9410 被引量:167
标识
DOI:10.1109/tpami.2023.3241201
摘要

Brain-inspired spiking neural networks (SNNs) are becoming a promising energy-efficient alternative to traditional artificial neural networks (ANNs). However, the performance gap between SNNs and ANNs has been a significant hindrance to deploying SNNs ubiquitously. To leverage the full potential of SNNs, in this paper we study the attention mechanisms, which can help human focus on important information. We present our idea of attention in SNNs with a multi-dimensional attention module, which infers attention weights along the temporal, channel, as well as spatial dimension separately or simultaneously. Based on the existing neuroscience theories, we exploit the attention weights to optimize membrane potentials, which in turn regulate the spiking response. Extensive experimental results on event-based action recognition and image classification datasets demonstrate that attention facilitates vanilla SNNs to achieve sparser spiking firing, better performance, and energy efficiency concurrently. In particular, we achieve top-1 accuracy of 75.92% and 77.08% on ImageNet-1 K with single/4-step Res-SNN-104, which are state-of-the-art results in SNNs. Compared with counterpart Res-ANN-104, the performance gap becomes -0.95/+0.21 percent and the energy efficiency is 31.8×/7.4×. To analyze the effectiveness of attention SNNs, we theoretically prove that the spiking degradation or the gradient vanishing, which usually holds in general SNNs, can be resolved by introducing the block dynamical isometry theory. We also analyze the efficiency of attention SNNs based on our proposed spiking response visualization method. Our work lights up SNN's potential as a general backbone to support various applications in the field of SNN research, with a great balance between effectiveness and energy efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
14秒前
安东尼奥完成签到 ,获得积分10
17秒前
狂野丹翠应助科研通管家采纳,获得10
27秒前
持卿应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
持卿应助科研通管家采纳,获得10
27秒前
持卿应助科研通管家采纳,获得10
27秒前
持卿应助科研通管家采纳,获得10
27秒前
我是老大应助莨菪采纳,获得10
29秒前
CipherSage应助milu采纳,获得20
32秒前
40秒前
48秒前
老马哥完成签到 ,获得积分0
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
CipherSage应助Penny采纳,获得10
1分钟前
1分钟前
Penny完成签到,获得积分10
1分钟前
Penny发布了新的文献求助10
1分钟前
盈盈发布了新的文献求助10
1分钟前
woxinyouyou完成签到,获得积分0
2分钟前
meeteryu完成签到,获得积分10
2分钟前
SciGPT应助盈盈采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
持卿应助科研通管家采纳,获得10
2分钟前
狂野丹翠应助科研通管家采纳,获得10
2分钟前
Wone3完成签到 ,获得积分10
2分钟前
knight7m完成签到 ,获得积分10
2分钟前
哈哈完成签到 ,获得积分10
2分钟前
Alisha完成签到,获得积分10
2分钟前
3分钟前
3分钟前
jjy发布了新的文献求助30
3分钟前
jjy完成签到,获得积分10
3分钟前
duoduo完成签到,获得积分10
3分钟前
4分钟前
wl发布了新的文献求助20
4分钟前
Kun应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160