Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses

需求响应 调度(生产过程) 模式(计算机接口) 环境经济学 激励 运筹学 数学优化 计算机科学 工程类 经济 运营管理 微观经济学 电气工程 数学 操作系统
作者
Chongchao Pan,Tai Jin,Na Li,Guanxiong Wang,Xiaowang Hou,Yueqing Gu
出处
期刊:Energy [Elsevier]
卷期号:270: 126846-126846 被引量:96
标识
DOI:10.1016/j.energy.2023.126846
摘要

To explore the influencing factors of the integrated benefit (IB) index of integrated energy systems (IESs) and the best energy supply mode, we constructed a two-stage optimization model for planning allocation and operation scheduling. First, according to the structural characteristics of the energy demand load combined with the operation characteristics of each piece of equipment in the IES, a refined capacity allocation constraint model was constructed. Second, an IB optimization model with economic, environmental, and energy benefits as the optimization objectives was established. Then, by analogy with the price-based demand response (PBDR) and incentive-based demand response (IBDR) of the power system, an integrated demand response (IDR) model covering cooling, heating, electricity and gas was constructed. Finally, a citizen service center in Hebei Province, China, was used as a simulated example. The scientific capacity allocation of each device of the IES improved the economic efficiency by 14.8%. Compared with the traditional operation mode, the economic benefits of the multi-objective optimization (MOO) operation mode were increased by 2.97% and 3.42%, respectively. After further introducing the IDR, IB increased to 20.55 and 20.46%, and the effect of IBDR was better.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aryac完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助Ma采纳,获得10
2秒前
遲悟篤行完成签到,获得积分10
3秒前
尹雪儿完成签到,获得积分10
3秒前
充电宝应助qq采纳,获得10
4秒前
AhhHuang应助容若采纳,获得10
5秒前
5秒前
科目三应助炙热的平灵采纳,获得10
5秒前
liuanqi发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI6应助文乐采纳,获得10
6秒前
安安安完成签到,获得积分10
7秒前
7秒前
Unicorn发布了新的文献求助10
7秒前
斯文败类应助清浅采纳,获得30
7秒前
7秒前
小二郎应助yyj采纳,获得10
8秒前
Aryac发布了新的文献求助10
8秒前
8秒前
9秒前
Pothos应助YAN采纳,获得30
10秒前
gzhoax应助山山而川采纳,获得30
10秒前
科研通AI6应助liam采纳,获得10
10秒前
烟里戏发布了新的文献求助10
10秒前
沙糖桔完成签到,获得积分10
10秒前
11秒前
Sunday给Sunday的求助进行了留言
11秒前
11秒前
ppy发布了新的文献求助10
11秒前
Chris发布了新的文献求助30
11秒前
嬴炎发布了新的文献求助10
11秒前
成就雨筠完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
崔大冠发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041