Discriminative dictionary learning based on statistical methods

K-SVD公司 判别式 人工智能 模式识别(心理学) 计算机科学 稀疏逼近 修补 奇异值分解 维数之咒 机器学习 图像(数学)
作者
G. Madhuri,Atul Negi
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 55-77 被引量:1
标识
DOI:10.1016/b978-0-323-91776-6.00004-x
摘要

Sparse representation (SR) modeling originates from compressed sensing theory with rigorous mathematical error bounds and proofs. The SR of a signal is given by the linear combination of very few columns of “dictionary,” implicitly reducing dimensionality. Training dictionaries so that they represent each class of signals with minimal reconstruction error is called dictionary learning (DL). Method of Optimal Directions (MOD) and K-SVD are some popular DL methods, successfully used in reconstruction-based applications in image processing like image denoising and image inpainting. Other DL algorithms such as Discriminative K-SVD and Label Consistent K-SVD have supervised learning methods based on K-SVD. From our experiments, we observed that the classification performance of these methods is not impressive on Telugu OCR data sets, with many classes and high input dimensionality. Many researchers have used statistical concepts to design dictionaries for classification or recognition. A brief review of some statistical techniques applied in discriminative DL is given here. The main objective of the methods described in this chapter is to improve classification using sparse representation. In this chapter, a hybrid approach is also described, where sparse coefficients of input data are used to train a simple multilayer perceptron with backpropagation. The classification results on the test data are comparable with other computation-intensive methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形觅翠完成签到,获得积分10
刚刚
刘鹏宇发布了新的文献求助10
刚刚
lizh187完成签到 ,获得积分10
刚刚
北城完成签到,获得积分10
刚刚
自由发布了新的文献求助10
1秒前
1秒前
小豆芽儿发布了新的文献求助10
1秒前
WNL发布了新的文献求助10
2秒前
Ngu完成签到,获得积分10
2秒前
科研通AI5应助冷艳后妈采纳,获得10
2秒前
陶1122发布了新的文献求助10
2秒前
万能图书馆应助乐观期待采纳,获得30
2秒前
krystal完成签到,获得积分10
2秒前
学术大小拿完成签到,获得积分10
3秒前
迪迦完成签到,获得积分10
3秒前
4秒前
乖乖发布了新的文献求助10
4秒前
4秒前
song24517发布了新的文献求助20
4秒前
顺利琦完成签到,获得积分10
5秒前
李子发布了新的文献求助10
5秒前
pbf完成签到,获得积分10
5秒前
5秒前
lyn发布了新的文献求助30
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Twikky完成签到,获得积分10
5秒前
柚子皮应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
852应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Akim应助夏末采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
迟大猫应助想学习采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678