Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:42
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助ccc采纳,获得10
1秒前
阳阳完成签到,获得积分10
1秒前
xl完成签到 ,获得积分10
2秒前
求知的周发布了新的文献求助30
3秒前
meibeiwu关注了科研通微信公众号
3秒前
HZH发布了新的文献求助10
4秒前
小蘑菇完成签到 ,获得积分10
4秒前
nb小子发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
David发布了新的文献求助10
6秒前
团团完成签到,获得积分10
6秒前
zwx发布了新的文献求助10
7秒前
怡然的寻桃关注了科研通微信公众号
8秒前
今天炒鱿鱼完成签到,获得积分20
8秒前
电池小能手完成签到,获得积分10
9秒前
Bubble_bei完成签到 ,获得积分10
10秒前
董恋风完成签到,获得积分10
11秒前
大模型应助一一采纳,获得10
12秒前
12秒前
13秒前
海鑫王完成签到,获得积分10
14秒前
mao关注了科研通微信公众号
14秒前
Attendre完成签到 ,获得积分10
14秒前
爆米花应助Faith采纳,获得10
15秒前
傲娇的月亮完成签到,获得积分10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
田様应助慢慢采纳,获得10
16秒前
16秒前
劼大大完成签到,获得积分10
16秒前
执着的草丛完成签到,获得积分10
16秒前
16秒前
wanci应助zwx采纳,获得10
17秒前
zwx发布了新的文献求助20
17秒前
18秒前
Owen应助风趣的天奇采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049