Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:40
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F_u完成签到,获得积分10
刚刚
囙氼仚完成签到,获得积分10
刚刚
刚刚
1秒前
qda关闭了qda文献求助
1秒前
科研通AI6应助55555558采纳,获得10
1秒前
Owen应助野性的沉鱼采纳,获得10
2秒前
上官若男应助Nymeria采纳,获得30
2秒前
2秒前
唠叨的谷秋完成签到,获得积分20
2秒前
闪耀章鱼发布了新的文献求助10
2秒前
李文浩发布了新的文献求助10
3秒前
彭秋期完成签到,获得积分20
3秒前
一切皆有利于我完成签到,获得积分10
3秒前
3秒前
3秒前
归尘发布了新的文献求助10
3秒前
漂亮幻然完成签到,获得积分10
3秒前
3秒前
林夏完成签到,获得积分10
4秒前
爆米花应助我想静静采纳,获得100
4秒前
4秒前
4秒前
4秒前
5秒前
qweqwe完成签到,获得积分10
5秒前
沉默寄凡发布了新的文献求助10
5秒前
汤飞柏发布了新的文献求助10
6秒前
酷炫的忆山完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
6秒前
iAlvinz完成签到,获得积分10
6秒前
英俊的铭应助CCCC采纳,获得10
6秒前
6秒前
图图应助楼下太吵了采纳,获得10
6秒前
6秒前
光亮的万天完成签到 ,获得积分10
6秒前
小马甲应助李楠采纳,获得10
6秒前
7秒前
coin完成签到,获得积分10
7秒前
打打应助tango采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873