已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:38
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
音殿发布了新的文献求助10
2秒前
慕青应助my采纳,获得10
2秒前
kenti2023完成签到 ,获得积分10
4秒前
共享精神应助guojingjing采纳,获得10
6秒前
7秒前
abb先生发布了新的文献求助10
9秒前
11秒前
YT发布了新的文献求助10
13秒前
火鸡味锅巴完成签到 ,获得积分10
15秒前
cqhecq完成签到,获得积分10
15秒前
感谢发布了新的文献求助10
15秒前
格物完成签到,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
哈基米德应助科研通管家采纳,获得20
22秒前
22秒前
Perry应助激昂的画笔采纳,获得30
23秒前
小小鱼完成签到 ,获得积分10
28秒前
30秒前
31秒前
luocan完成签到,获得积分10
33秒前
33秒前
怡然剑成完成签到 ,获得积分10
34秒前
吼吼哈嘿发布了新的文献求助10
34秒前
万能图书馆应助可乐采纳,获得10
35秒前
枫威完成签到 ,获得积分10
35秒前
36秒前
36秒前
自觉匪完成签到 ,获得积分10
36秒前
果果发布了新的文献求助10
36秒前
小波完成签到 ,获得积分10
38秒前
善学以致用应助duoduoqian采纳,获得30
38秒前
了了发布了新的文献求助10
38秒前
脑洞疼应助李小小采纳,获得10
41秒前
hcsdgf完成签到 ,获得积分10
42秒前
mwm完成签到 ,获得积分10
42秒前
了了完成签到,获得积分10
48秒前
领导范儿应助故意的幻然采纳,获得10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144