Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 队列研究 放射科 索拉非尼
作者
Bo Zhang,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi,Yunfeng Shan,Zhengping Yu,Yi Wang,Gang Chen
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:14
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小h完成签到 ,获得积分10
1秒前
2秒前
2秒前
李锐完成签到,获得积分20
3秒前
淡淡十三发布了新的文献求助10
3秒前
xiuxi2021发布了新的文献求助10
3秒前
天Q发布了新的文献求助10
4秒前
华仔应助蓝桉树采纳,获得10
4秒前
5秒前
喃义完成签到,获得积分10
5秒前
7秒前
7秒前
糖七泡泡完成签到 ,获得积分10
7秒前
SciGPT应助123456采纳,获得10
7秒前
禅依完成签到,获得积分10
8秒前
nn完成签到 ,获得积分10
8秒前
8秒前
乐观海云发布了新的文献求助10
9秒前
9秒前
欣慰秋蝶发布了新的文献求助10
10秒前
11秒前
悦耳的芒果完成签到,获得积分10
11秒前
苏书白应助唯有采纳,获得10
11秒前
自然谷波完成签到,获得积分10
13秒前
13秒前
善学以致用应助淡淡十三采纳,获得10
13秒前
chen完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
陈住气给陈住气的求助进行了留言
15秒前
树季大王关注了科研通微信公众号
15秒前
长情青烟完成签到,获得积分10
15秒前
奔波儿灞完成签到,获得积分20
15秒前
16秒前
chen发布了新的文献求助10
16秒前
pjh完成签到,获得积分10
16秒前
藤藤发布了新的文献求助10
17秒前
zzn完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663