Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:28
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ahxb完成签到,获得积分10
1秒前
linjiaxin完成签到,获得积分10
3秒前
uniphoton完成签到,获得积分10
4秒前
4秒前
小蘑菇应助ahxb采纳,获得10
4秒前
赤枫彤云发布了新的文献求助10
4秒前
能干的月光完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Tushar完成签到,获得积分10
5秒前
linjiaxin发布了新的文献求助10
6秒前
May应助露露采纳,获得20
7秒前
思源应助研白采纳,获得10
7秒前
K先生完成签到,获得积分10
7秒前
123关闭了123文献求助
10秒前
和谐之玉发布了新的文献求助200
12秒前
14秒前
15秒前
lili完成签到,获得积分10
16秒前
鱼仔发布了新的文献求助10
17秒前
20秒前
20秒前
研白发布了新的文献求助10
21秒前
皮皮完成签到 ,获得积分10
24秒前
宋子虎发布了新的文献求助10
24秒前
linda关注了科研通微信公众号
25秒前
鱼仔完成签到,获得积分10
27秒前
28秒前
兴奋的定帮完成签到 ,获得积分0
29秒前
赘婿应助刘刘大顺采纳,获得10
30秒前
司空元正完成签到 ,获得积分10
30秒前
Owen应助liuzengzhang666采纳,获得10
30秒前
xiejinhui发布了新的文献求助10
31秒前
雪鸽鸽完成签到,获得积分10
34秒前
传奇3应助xiejinhui采纳,获得10
36秒前
刻苦羽毛完成签到,获得积分10
37秒前
虚心的芹发布了新的文献求助10
37秒前
8R60d8应助您好刘皇叔采纳,获得10
38秒前
38秒前
40秒前
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150