Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:40
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
月月发布了新的文献求助10
1秒前
lbuild完成签到,获得积分10
2秒前
F-超哥发布了新的文献求助10
2秒前
酷酷的老头完成签到,获得积分10
3秒前
典雅又夏完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
十月关注了科研通微信公众号
4秒前
5秒前
研友_GZb9an完成签到,获得积分10
5秒前
HAO完成签到,获得积分10
5秒前
传奇3应助boyaqin采纳,获得10
5秒前
田様应助雾隐采纳,获得10
6秒前
小蘑菇应助陈陈采纳,获得10
6秒前
7秒前
lhy发布了新的文献求助10
8秒前
星辰大海应助吴华鑫采纳,获得10
8秒前
辛勤的幻莲完成签到 ,获得积分10
9秒前
科研通AI2S应助miemie66采纳,获得10
9秒前
orixero应助RK_404采纳,获得10
9秒前
李健的粉丝团团长应助zzz采纳,获得10
10秒前
reggielike完成签到 ,获得积分10
11秒前
kaitohan完成签到,获得积分10
12秒前
12秒前
花痴的沛文完成签到,获得积分20
12秒前
长情笑柳完成签到,获得积分10
14秒前
15秒前
文艺的真完成签到,获得积分10
16秒前
万能图书馆应助葛优采纳,获得10
16秒前
16秒前
zzz完成签到,获得积分10
16秒前
Hello应助侯一刀采纳,获得10
18秒前
零点起步完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
古铜完成签到 ,获得积分10
20秒前
20秒前
orixero应助ID8采纳,获得10
20秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659958
求助须知:如何正确求助?哪些是违规求助? 4830577
关于积分的说明 15088675
捐赠科研通 4818565
什么是DOI,文献DOI怎么找? 2578667
邀请新用户注册赠送积分活动 1533290
关于科研通互助平台的介绍 1492016