Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study

医学 伦瓦提尼 队列 无线电技术 肝细胞癌 内科学 肿瘤科 置信区间 放射科 索拉非尼
作者
Zhiyuan Bo,Bo Chen,Zhengxiao Zhao,Qikuan He,Yicheng Mao,Yunjun Yang,Fei Yao,Yi Yang,Ziyan Chen,Jinhuan Yang,Haitao Yu,Jun Ma,Lijun Wu,Kaiyu Chen,Luhui Wang,Mingxun Wang,Zhehao Shi,Xinfei Yao,Yulong Dong,Xintong Shi,Yunfeng Shan,Zhengping Yu,Yi Wang,Gang Chen
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:29 (9): 1730-1740 被引量:21
标识
DOI:10.1158/1078-0432.ccr-22-2784
摘要

Abstract Purpose: We aimed to construct machine learning (ML) radiomics models to predict response to lenvatinib monotherapy for unresectable hepatocellular carcinoma (HCC). Experimental Design: Patients with HCC receiving lenvatinib monotherapy at three institutions were retrospectively identified and assigned to training and external validation cohorts. Tumor response after initiation of lenvatinib was evaluated. Radiomics features were extracted from contrast-enhanced CT images. The K-means clustering algorithm was used to distinguish radiomics-based subtypes. Ten ML radiomics models were constructed and internally validated by 10-fold cross-validation. These models were subsequently verified in an external validation cohort. Results: A total of 109 patients were identified for analysis, namely, 74 in the training cohort and 35 in the external validation cohort. Thirty-two patients showed partial response, 33 showed stable disease, and 44 showed progressive disease. The overall response rate (ORR) was 29.4%, and the disease control rate was 59.6%. A total of 224 radiomics features were extracted, and 25 significant features were identified for further analysis. Two distant radiomics-based subtypes were identified by K-means clustering, and subtype 1 was associated with a higher ORR and longer progression-free survival (PFS). Among the 10 ML algorithms, AutoGluon displayed the highest predictive performance (AUC = 0.97), which was relatively stable in the validation cohort (AUC = 0.93). Kaplan–Meier analysis showed that responders had a better overall survival [HR = 0.21; 95% confidence interval (CI): 0.12–0.36; P < 0.001] and PFS (HR = 0.14; 95% CI: 0.09–0.22; P < 0.001) than nonresponders. Conclusions: Valuable ML radiomics models were constructed, with favorable performance in predicting the response to lenvatinib monotherapy for unresectable HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英勇的思天完成签到 ,获得积分10
1秒前
zzqx完成签到,获得积分10
3秒前
起司嗯完成签到,获得积分10
3秒前
开放鸵鸟完成签到,获得积分10
3秒前
徐徐发布了新的文献求助10
3秒前
ZZZ发布了新的文献求助10
4秒前
懵懂的子骞完成签到 ,获得积分10
5秒前
mammoth发布了新的文献求助40
5秒前
5秒前
英俊的铭应助Chang采纳,获得10
6秒前
6秒前
6秒前
kk子完成签到,获得积分10
7秒前
夏橪发布了新的文献求助10
7秒前
JamesPei应助lunan采纳,获得10
8秒前
传奇3应助qing采纳,获得10
8秒前
卫尔摩斯完成签到,获得积分10
9秒前
9秒前
9秒前
沉默牛排发布了新的文献求助10
9秒前
科研通AI5应助独特微笑采纳,获得10
9秒前
10秒前
10秒前
碧玉墨绿完成签到,获得积分10
10秒前
xiaoma完成签到,获得积分10
10秒前
11秒前
潇洒的擎苍完成签到,获得积分10
11秒前
刘晓纳发布了新的文献求助10
11秒前
晴子发布了新的文献求助10
11秒前
洛鸢发布了新的文献求助10
12秒前
立马毕业完成签到,获得积分10
12秒前
卫尔摩斯发布了新的文献求助10
12秒前
BINBIN完成签到 ,获得积分10
12秒前
hfgeyt完成签到,获得积分10
13秒前
sakurai应助背后的诺言采纳,获得10
13秒前
湘华发布了新的文献求助10
14秒前
Jenny应助lan采纳,获得10
14秒前
单薄的飞松完成签到 ,获得积分10
14秒前
醒醒发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762