Flexible dielectric polymer nanocomposites with improved thermal energy management for energy-power applications

材料科学 纳米复合材料 电介质 复合材料 热稳定性 碳纳米管 聚合物 聚合物纳米复合材料 氮化硼 化学工程 光电子学 工程类
作者
Uwa O. Uyor,A.P.I. Popoola,Olawale Popoola
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:11 被引量:4
标识
DOI:10.3389/fenrg.2023.1114512
摘要

Most polymer materials are thermal and electrical insulators, which have wide potential in advanced energy-power applications including energy conversion. However, polymers get softened when in contact with heat, which causes their molecular chains to flow as the temperature increases. Although polymer dielectrics exhibit high power density, they face challenges of low energy density which is due to the low dielectric permittivity associated with them. Therefore, this study tried to address the poor thermal energy management and low energy density of poly (vinylidene fluoride) (PVDF) while maintaining its flexible property using low content of hybrid carbon nanotubes (CNTs–0.05wt%, 0.1wt%) and boron nitride (BN–5wt%, 10wt%) nano-reinforcements. The nanocomposites were developed through solvent mixing and hot compression processes. The dielectric constant increased from 9.1 for the pure PVDF to 42.8 with a low loss of about 0.1 at 100 Hz for PVDF-0.1wt%CNTs-10wt%BN. The thermal stability of the nanocomposites was enhanced by 55°C compared to the pure PVDF. The nanocomposites also showed improved melting and crystallization temperatures. The developed PVDF-CNTs-BN nanocomposites showed significant enhancements in thermal energy management, stability, and dielectric properties. The significantly improved properties are credited to the synergetic effects between CNTs and BN in the PVDF matrix in promoting homogeneous dispersion, thermal barrier, interfacial polarization/bonding, insulative and conductive properties. Therefore, the developed nanomaterials in this study can find advanced applications in the energy-power sector owing to their enhanced performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助frank采纳,获得30
刚刚
傲娇的咖啡豆完成签到,获得积分10
1秒前
LLYxx完成签到,获得积分10
1秒前
迪奥哒应助友好若南采纳,获得10
1秒前
Xy完成签到,获得积分10
3秒前
3秒前
领导范儿应助青葱年华rr采纳,获得10
3秒前
忐忑的草丛完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助哇哈哈哈采纳,获得10
6秒前
科研通AI2S应助Xy采纳,获得10
7秒前
frank完成签到,获得积分20
7秒前
wangkekekeing发布了新的文献求助10
8秒前
sameen完成签到,获得积分10
10秒前
深情安青应助彩色大碗采纳,获得10
14秒前
同學你該吃藥了完成签到 ,获得积分10
16秒前
健忘的夜山完成签到,获得积分10
20秒前
汉堡包应助萧梦旋采纳,获得10
23秒前
wangkekekeing完成签到,获得积分10
24秒前
HH完成签到,获得积分10
25秒前
卡拉尔德发布了新的文献求助10
25秒前
123完成签到,获得积分10
27秒前
hug沅沅完成签到,获得积分20
28秒前
28秒前
藏续发布了新的文献求助10
29秒前
rea发布了新的文献求助10
32秒前
hug沅沅发布了新的文献求助10
33秒前
克劳克伊完成签到,获得积分10
35秒前
Lucas应助长生不老采纳,获得10
36秒前
llchen完成签到,获得积分0
37秒前
令狐紫夏完成签到,获得积分10
37秒前
wuhao完成签到 ,获得积分0
37秒前
喝酸奶不舔盖完成签到 ,获得积分10
37秒前
唯博完成签到 ,获得积分10
39秒前
Akim应助阿荣撒采纳,获得10
40秒前
grant完成签到 ,获得积分10
40秒前
JYM完成签到,获得积分10
43秒前
sky应助张张采纳,获得10
43秒前
神经蛙发布了新的文献求助10
44秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134