Simultaneous Destriping and Image Denoising Using a Nonparametric Model With the EM Algorithm

估计员 算法 数学 非本地手段 先验概率 图像(数学) 图像复原 降噪 人工智能 计算机科学 图像处理 统计 图像去噪 贝叶斯概率
作者
Lingfei Song,Hua Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1065-1077 被引量:7
标识
DOI:10.1109/tip.2023.3239193
摘要

Digital images often suffer from the common problem of stripe noise due to the inconsistent bias of each column. The existence of the stripe poses much more difficulties on image denoising since it requires another n parameters, where n is the width of the image, to characterize the total interference of the observed image. This paper proposes a novel EM-based framework for simultaneous stripe estimation and image denoising. The great benefit of the proposed framework is that it splits the overall destriping and denoising problem into two independent sub-problems, i.e., calculating the conditional expectation of the true image given the observation and the estimated stripe from the last round of iteration, and estimating the column means of the residual image, such that a Maximum Likelihood Estimation (MLE) is guaranteed and it does not require any explicit parametric modeling of image priors. The calculation of the conditional expectation is the key, here we choose a modified Non-Local Means algorithm to calculate the conditional expectation because it has been proven to be a consistent estimator under some conditions. Besides, if we relax the consistency requirement, the conditional expectation could be interpreted as a general image denoiser. Therefore other state-of-the-art image denoising algorithms have the potentials to be incorporated into the proposed framework. Extensive experiments have demonstrated the superior performance of the proposed algorithm and provide some promising results that motivate future research on the EM-based destriping and denoising framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tommy完成签到,获得积分10
刚刚
共享精神应助田田田采纳,获得10
2秒前
2秒前
Hello应助安古妮稀采纳,获得30
2秒前
思源应助顺心的水之采纳,获得10
3秒前
科研通AI2S应助畅快不平采纳,获得10
3秒前
李爱国应助畅快不平采纳,获得10
4秒前
Metakuro发布了新的文献求助10
4秒前
4秒前
赘婿应助桑田采纳,获得10
5秒前
毛毛完成签到,获得积分10
5秒前
5秒前
5秒前
muxiao26完成签到,获得积分10
6秒前
shanyuee应助大胆的怀曼采纳,获得10
8秒前
9秒前
9秒前
充电宝应助冷傲海蓝采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
lqy1214完成签到,获得积分10
10秒前
十夏应助科研通管家采纳,获得10
10秒前
hli应助科研通管家采纳,获得10
10秒前
xiaoming应助科研通管家采纳,获得30
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
一路向北发布了新的文献求助10
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870