已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GGCNN: An Efficiency-Maximizing Gated Graph Convolutional Neural Network Architecture for Automatic Modulation Identification

计算机科学 分类器(UML) 卷积神经网络 特征提取 模式识别(心理学) 人工智能 图形 理论计算机科学
作者
Pejman Ghasemzadeh,Michael Hempel,Honggang Wang,Hamid Sharif
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:22 (9): 6033-6047 被引量:10
标识
DOI:10.1109/twc.2023.3239311
摘要

Automatic modulation identification (AMI) is a technique to detect the modulation type and order of a received signal, which has the potential to enhance cognitive radio capabilities for future generations of communication devices. However, AMI classifiers traditionally have exhibited low efficiency in low signal-to-noise ratio (SNR) environments. Hence, to address this problem we present our novel Gated Graph Convolutional Neural Network (GGCNN) classifier for feature-based AMI. This architecture includes a robust feature extraction stage to extract deep correlative patterns about the received symbols. Not only does this feature extraction stage use the temporal characteristics of the received symbols, but it also takes advantage of embedded signaling features from the received signal. In the proposed classifier, the received constellations are treated as a graph, allowing it to outperform state-of-the-art classifiers due to its strong performance in graph classification. This is observed clearly in the visualization of the extracted features, even for high-order modulation schemes. In this paper, we present our systematic research conducted for maximizing the efficiency obtainable by our classifier. Extensive simulation results demonstrate a significant accuracy improvement of 18.44 percentage points, and an efficiency increase by 60.78% for our GGCNN-AMI classifier compared to state-of-the-art classifiers in low-SNR environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嗷嗷发布了新的文献求助10
2秒前
SciGPT应助nenoaowu采纳,获得10
3秒前
Jonathan完成签到,获得积分10
6秒前
7秒前
枇杷完成签到 ,获得积分10
8秒前
8秒前
8秒前
丘比特应助mochi采纳,获得10
8秒前
Lee发布了新的文献求助10
11秒前
张占完成签到,获得积分10
12秒前
12秒前
谦让大娘发布了新的文献求助10
13秒前
任性静祝完成签到 ,获得积分10
16秒前
kyfbrahha完成签到 ,获得积分10
17秒前
18秒前
Lee完成签到,获得积分10
19秒前
魁梧的鸿煊完成签到 ,获得积分10
19秒前
20秒前
yang完成签到 ,获得积分10
21秒前
蔚欢完成签到 ,获得积分10
22秒前
英俊的胜完成签到,获得积分10
22秒前
Atlantis完成签到 ,获得积分10
23秒前
mochi发布了新的文献求助10
24秒前
sunflowers完成签到 ,获得积分10
25秒前
微笑驳完成签到 ,获得积分10
25秒前
26秒前
木象爱火锅完成签到,获得积分10
29秒前
菜鸡5号完成签到,获得积分10
29秒前
芝士奶盖有点咸完成签到 ,获得积分10
30秒前
32秒前
嘀嘀菇菇完成签到 ,获得积分10
32秒前
呜呼啦呼完成签到 ,获得积分10
33秒前
西门浩宇完成签到 ,获得积分10
33秒前
兜里没糖了完成签到 ,获得积分10
33秒前
佐敦完成签到,获得积分10
34秒前
田様应助打工人采纳,获得10
34秒前
云上人完成签到 ,获得积分10
35秒前
暗号完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077854
关于积分的说明 9150810
捐赠科研通 2770325
什么是DOI,文献DOI怎么找? 1520280
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253