Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network

可解释性 深度学习 计算机科学 人工智能 人工神经网络 卷积神经网络 循环神经网络 机器学习 图形 理论计算机科学
作者
Chen Liu,Haider Raza,Saugat Bhattacharyya
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 205-242
标识
DOI:10.1016/b978-0-323-85955-4.00010-7
摘要

This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何以发布了新的文献求助10
1秒前
2秒前
清爽老九发布了新的文献求助10
3秒前
wyc完成签到,获得积分20
3秒前
5秒前
慕青应助甘蓝型油菜采纳,获得10
6秒前
SciGPT应助汤圆儿采纳,获得30
6秒前
共享精神应助林夕采纳,获得10
6秒前
JamesPei应助wyg117采纳,获得10
7秒前
8秒前
何以完成签到,获得积分20
8秒前
夕夜发布了新的文献求助10
9秒前
Ali应助咕噜噜采纳,获得10
9秒前
12秒前
兴奋冬日发布了新的文献求助10
12秒前
13秒前
ding应助小麦采纳,获得10
13秒前
Jemma发布了新的文献求助10
14秒前
高大的莞完成签到 ,获得积分10
15秒前
小幸运发布了新的文献求助10
16秒前
18秒前
斯文败类应助文献小白白采纳,获得20
19秒前
bingbing发布了新的文献求助10
19秒前
深情安青应助坚定思光采纳,获得10
20秒前
Wang Mu发布了新的文献求助40
23秒前
23秒前
saying发布了新的文献求助10
25秒前
29秒前
bingbing完成签到,获得积分20
29秒前
小二郎应助fxd采纳,获得10
30秒前
30秒前
30秒前
31秒前
丘比特应助Cheney采纳,获得10
32秒前
33秒前
自觉的火龙果完成签到,获得积分10
34秒前
不开心完成签到,获得积分10
34秒前
周破儿完成签到 ,获得积分10
35秒前
626发布了新的文献求助10
35秒前
情怀应助包子采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297339
求助须知:如何正确求助?哪些是违规求助? 2932791
关于积分的说明 8459159
捐赠科研通 2605576
什么是DOI,文献DOI怎么找? 1422420
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644705