Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network

可解释性 深度学习 计算机科学 人工智能 人工神经网络 卷积神经网络 循环神经网络 机器学习 图形 理论计算机科学
作者
Chen Liu,Haider Raza,Saugat Bhattacharyya
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 205-242
标识
DOI:10.1016/b978-0-323-85955-4.00010-7
摘要

This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾某发布了新的文献求助10
刚刚
Keyl完成签到,获得积分10
刚刚
spw完成签到,获得积分10
1秒前
快乐葶完成签到,获得积分10
2秒前
beimi完成签到,获得积分10
2秒前
ha完成签到,获得积分10
3秒前
3秒前
3秒前
Zz完成签到,获得积分10
4秒前
XJ发布了新的文献求助10
4秒前
充电宝应助impending采纳,获得30
4秒前
5秒前
阳阳阳完成签到,获得积分10
6秒前
6秒前
嘤嘤嘤完成签到,获得积分10
6秒前
7秒前
暮时完成签到 ,获得积分10
7秒前
7秒前
www完成签到,获得积分10
8秒前
woods完成签到,获得积分10
8秒前
XUXU完成签到,获得积分20
8秒前
风趣怜烟完成签到,获得积分10
8秒前
9秒前
化学小学生完成签到,获得积分10
9秒前
duo发布了新的文献求助10
9秒前
人人人发布了新的文献求助10
9秒前
tusizi2006完成签到,获得积分10
9秒前
10秒前
英俊的铭应助Iris采纳,获得10
10秒前
平淡纸飞机完成签到 ,获得积分10
10秒前
hismeng发布了新的文献求助10
11秒前
11秒前
小周发布了新的文献求助10
11秒前
11秒前
cnvax完成签到,获得积分10
12秒前
tusizi2006发布了新的文献求助10
12秒前
13秒前
13秒前
无花果应助HAL9000采纳,获得10
14秒前
大力的契完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685