Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network

可解释性 深度学习 计算机科学 人工智能 人工神经网络 卷积神经网络 循环神经网络 机器学习 图形 理论计算机科学
作者
Chen Liu,Haider Raza,Saugat Bhattacharyya
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 205-242
标识
DOI:10.1016/b978-0-323-85955-4.00010-7
摘要

This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuo发布了新的文献求助10
1秒前
橙汁发布了新的文献求助10
1秒前
科研通AI6应助宋宋采纳,获得10
1秒前
乐乐应助勤劳的星月采纳,获得10
1秒前
科研通AI6应助隔壁老吴采纳,获得10
2秒前
2秒前
li完成签到,获得积分10
2秒前
3秒前
3秒前
健壮羊青发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
汉堡包应助激情的含巧采纳,获得10
3秒前
鲤鱼草丛完成签到,获得积分10
4秒前
今后应助苏休夫采纳,获得10
5秒前
喵喵描白完成签到,获得积分10
6秒前
丘比特应助LLLLL采纳,获得10
6秒前
bujiachong发布了新的文献求助10
7秒前
吴吴凡发布了新的文献求助10
7秒前
Henry发布了新的文献求助10
7秒前
8秒前
9秒前
hs完成签到,获得积分0
9秒前
顾矜应助冷傲的晓山采纳,获得10
10秒前
SongXJ发布了新的文献求助10
10秒前
roclie完成签到,获得积分10
10秒前
x1完成签到,获得积分10
10秒前
阿喵在挖矿完成签到 ,获得积分10
10秒前
lucky应助ZHU采纳,获得20
10秒前
10秒前
阿吉完成签到,获得积分10
11秒前
Lucas应助赵小卷采纳,获得10
11秒前
11秒前
11秒前
33完成签到 ,获得积分10
13秒前
13秒前
lbx发布了新的文献求助10
13秒前
Jared发布了新的文献求助100
13秒前
LLLLL完成签到,获得积分20
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503