Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network

可解释性 深度学习 计算机科学 人工智能 人工神经网络 卷积神经网络 循环神经网络 机器学习 图形 理论计算机科学
作者
Chen Liu,Haider Raza,Saugat Bhattacharyya
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 205-242
标识
DOI:10.1016/b978-0-323-85955-4.00010-7
摘要

This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1523完成签到 ,获得积分10
2秒前
6秒前
9秒前
缥缈绮兰发布了新的文献求助10
10秒前
秋秋糖xte发布了新的文献求助10
12秒前
又又完成签到,获得积分10
12秒前
韧迹完成签到 ,获得积分0
15秒前
郭德久完成签到 ,获得积分0
18秒前
番茄小超人2号完成签到 ,获得积分10
19秒前
qwe发布了新的文献求助10
22秒前
笨笨忘幽完成签到,获得积分10
22秒前
美丽完成签到 ,获得积分10
27秒前
CLTTT完成签到,获得积分10
30秒前
居里姐姐完成签到 ,获得积分10
32秒前
现实的曼安完成签到 ,获得积分10
34秒前
sunzhengkui完成签到,获得积分10
35秒前
MrChew完成签到 ,获得积分10
42秒前
凌露完成签到 ,获得积分0
44秒前
秋秋糖xte完成签到,获得积分10
45秒前
hsrlbc完成签到,获得积分10
46秒前
活力的邴完成签到 ,获得积分10
52秒前
活力的邴关注了科研通微信公众号
57秒前
fanssw完成签到 ,获得积分10
57秒前
忧虑的静柏完成签到 ,获得积分10
1分钟前
1分钟前
耿教授发布了新的文献求助10
1分钟前
小猪完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
背后海亦发布了新的文献求助10
1分钟前
慕青应助沈万熙采纳,获得10
1分钟前
BCKT完成签到,获得积分10
1分钟前
badbaby完成签到 ,获得积分10
1分钟前
方圆完成签到 ,获得积分10
1分钟前
1分钟前
无奈的书琴完成签到 ,获得积分10
1分钟前
2分钟前
数乱了梨花完成签到 ,获得积分10
2分钟前
背后海亦发布了新的文献求助10
2分钟前
ACMI完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167340
捐赠科研通 3248714
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875065
科研通“疑难数据库(出版商)”最低求助积分说明 804664