Deep learning methods for analysis of neural signals: From conventional neural network to graph neural network

可解释性 深度学习 计算机科学 人工智能 人工神经网络 卷积神经网络 循环神经网络 机器学习 图形 理论计算机科学
作者
Chen Liu,Haider Raza,Saugat Bhattacharyya
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 205-242
标识
DOI:10.1016/b978-0-323-85955-4.00010-7
摘要

This chapter mainly addresses the topic of deep learning methods applied in the field of neural signal processing. We started our discussion with basic neural network frameworks such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid networks frameworks, an important mechanism attention is also introduced for its breakthrough effect for machine learning tasks. Then we discussed about an emerging subfield graph neural network (GNN), which has attracted interests of researchers in communities, because models based on graphs are expressive at learning both structural and attributes at the same time, meanwhile in reality many data are naturally or can be purposely organized in the format of graphs. In terms of neural signals, it is especially appropriate to adopt GNNs for the analysis of brain connectomes. We discussed various types of GNNs based on their different ways of information aggregation approaches, namely convolutional, attention-based, and message passing flavors. Applications of GNNs on neural data are still in its early stage but several attempts have been made and paved a way as we exemplified. Despite the effectiveness of deep learning compared with traditional machine learning methods, it also suffers from interpretability and data greediness. For data feeding into the models are represented through hidden layers, what each layer means remains obscure. Meanwhile, large quantities of data (especially labelled ones) are needed for training a successful model which is usually not the case in domain specific neural data. In the future, efforts are expected to design deep learning, particularly graph-based deep learning methods to improve the current neuroscientific and engineering research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lishuang发布了新的文献求助10
刚刚
1秒前
星落枝头发布了新的文献求助10
1秒前
Simlove完成签到,获得积分10
1秒前
啊呸噼里啪啦应助chl采纳,获得10
2秒前
3秒前
wjx关闭了wjx文献求助
3秒前
芙卡洛斯发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ED应助zsy采纳,获得10
6秒前
wjx关闭了wjx文献求助
9秒前
芙卡洛斯完成签到,获得积分20
10秒前
爱听歌初曼完成签到,获得积分10
10秒前
星辰大海应助可耐的青雪采纳,获得10
11秒前
ZM发布了新的文献求助10
11秒前
活力的青枫完成签到,获得积分10
12秒前
勤恳紫霜完成签到,获得积分10
12秒前
wjx关闭了wjx文献求助
13秒前
13秒前
莲枳榴莲完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
17秒前
wjx关闭了wjx文献求助
18秒前
18秒前
顾矜应助Eve采纳,获得10
18秒前
勤恳紫霜发布了新的文献求助10
18秒前
19秒前
大个应助农大彭于晏采纳,获得10
19秒前
Maisie发布了新的文献求助30
19秒前
无奈镜子发布了新的文献求助10
20秒前
20秒前
早茶可口完成签到,获得积分10
20秒前
所所应助shuo采纳,获得10
20秒前
一枝完成签到 ,获得积分10
21秒前
精明的沅应助mysci采纳,获得10
21秒前
wjx关闭了wjx文献求助
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305