An SFA-HMM performance evaluation method using state difference optimization for running gear systems in high-speed trains

火车 计算机科学 隐马尔可夫模型 国家(计算机科学) 算法 语音识别 地图学 地理
作者
Chao Cheng,Meng Wang,Jiuhe Wang,Junjie Shao,Hongtian Chen
出处
期刊:International Journal of Applied Mathematics and Computer Science [De Gruyter]
卷期号:32 (3) 被引量:1
标识
DOI:10.34768/amcs-2022-0028
摘要

The evaluation of system performance plays an increasingly important role in the reliability analysis of cyber-physical systems. Factors of external instability affect the evaluation results in complex systems. Taking the running gear in high-speed trains as an example, its complex operating environment is the most critical factor affecting the performance evaluation design. In order to optimize the evaluation while improving accuracy, this paper develops a performance evaluation method based on slow feature analysis and a hidden Markov model (SFA-HMM). The utilization of SFA can screen out the slowest features as HMM inputs, based on which a new HMM is established for performance evaluation of running gear systems. In addition to directly classical performance evaluation for running gear systems of high-speed trains, the slow feature statistic is proposed to detect the difference in the system state through test data, and then eliminate the error evaluation of the HMM in the stable state. In addition, indicator planning and status classification of the data are performed through historical information and expert knowledge. Finally, a case study of the running gear system in high-speed trains is discussed. After comparison, the result shows that the proposed method can enhance evaluation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助day_on采纳,获得10
1秒前
tang123发布了新的文献求助10
1秒前
竹筏过海应助完美的海秋采纳,获得30
1秒前
丘比特应助坦率的刺猬采纳,获得10
2秒前
大个应助ardejiang采纳,获得10
6秒前
WQY完成签到,获得积分10
8秒前
maomao完成签到 ,获得积分10
8秒前
8秒前
9秒前
优秀傲之完成签到,获得积分10
13秒前
232314发布了新的文献求助10
13秒前
day_on发布了新的文献求助10
13秒前
乾清宫喝奶茶完成签到,获得积分10
14秒前
Armstrong完成签到,获得积分10
15秒前
科研通AI2S应助WQY采纳,获得10
16秒前
16秒前
林洁佳完成签到,获得积分10
16秒前
栗子发布了新的文献求助10
17秒前
陈陈完成签到 ,获得积分10
21秒前
飞鱼发布了新的文献求助30
21秒前
不配.应助完美的海秋采纳,获得10
22秒前
22秒前
栗子完成签到,获得积分10
23秒前
26秒前
28秒前
zhouleibio完成签到,获得积分10
29秒前
30秒前
31秒前
刚刚好完成签到 ,获得积分10
31秒前
我是老大应助热闹的冬天采纳,获得10
31秒前
32秒前
lzy完成签到 ,获得积分10
32秒前
33秒前
月儿完成签到,获得积分10
36秒前
烟花应助科研通管家采纳,获得10
36秒前
六六应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
传奇3应助科研通管家采纳,获得30
36秒前
37秒前
小马甲应助科研通管家采纳,获得10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242411
求助须知:如何正确求助?哪些是违规求助? 2886764
关于积分的说明 8244805
捐赠科研通 2555314
什么是DOI,文献DOI怎么找? 1383399
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625537