Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDD发布了新的文献求助10
1秒前
陆程文完成签到,获得积分10
1秒前
1秒前
霞俊杰完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
Awei完成签到,获得积分10
2秒前
天天快乐应助牛贝贝采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
BowieHuang应助Ymir采纳,获得40
4秒前
4秒前
NexusExplorer应助1101592875采纳,获得10
4秒前
付研琪发布了新的文献求助10
4秒前
花灯王子完成签到,获得积分10
5秒前
Lqian_Yu完成签到 ,获得积分10
5秒前
小葛发布了新的文献求助10
5秒前
Kevin发布了新的文献求助20
6秒前
lzx完成签到,获得积分10
6秒前
ZIS发布了新的文献求助10
6秒前
吴帅发布了新的文献求助10
6秒前
6秒前
6秒前
keyanrubbish发布了新的文献求助10
6秒前
tangshijun完成签到,获得积分10
7秒前
7秒前
7秒前
子车茗应助sober采纳,获得20
7秒前
7秒前
无疾而终完成签到,获得积分10
7秒前
Tdj完成签到,获得积分10
7秒前
白苹果完成签到 ,获得积分10
8秒前
天行完成签到,获得积分10
8秒前
爆米花应助666采纳,获得10
8秒前
9秒前
potatozhou完成签到,获得积分10
9秒前
9秒前
Harssi发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836