亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫津完成签到,获得积分10
刚刚
1秒前
1秒前
调皮芫发布了新的文献求助10
6秒前
萝卜猪完成签到,获得积分10
26秒前
26秒前
36秒前
万能图书馆应助调皮芫采纳,获得10
43秒前
Owen应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
科研通AI5应助科研通管家采纳,获得10
54秒前
1分钟前
1分钟前
调皮芫发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ava应助Yanz采纳,获得10
2分钟前
pegasus0802完成签到,获得积分10
2分钟前
2分钟前
Yanz发布了新的文献求助10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
奈思完成签到 ,获得积分10
3分钟前
Yanz完成签到,获得积分10
3分钟前
3分钟前
来活发布了新的文献求助10
3分钟前
3分钟前
YOGA1115发布了新的文献求助10
3分钟前
3分钟前
来活完成签到,获得积分10
3分钟前
华仔应助TiAmo采纳,获得10
4分钟前
4分钟前
4分钟前
TiAmo发布了新的文献求助10
4分钟前
Kevin完成签到,获得积分10
4分钟前
4分钟前
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
彭于晏应助TiAmo采纳,获得10
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078209
求助须知:如何正确求助?哪些是违规求助? 4297037
关于积分的说明 13387745
捐赠科研通 4119669
什么是DOI,文献DOI怎么找? 2256149
邀请新用户注册赠送积分活动 1260461
关于科研通互助平台的介绍 1194019