Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangjia完成签到 ,获得积分10
刚刚
tianmeiling完成签到 ,获得积分10
1秒前
yiyi完成签到 ,获得积分10
1秒前
淡定绮波应助叶液采纳,获得10
1秒前
2秒前
2秒前
XIAOXIAOLI完成签到,获得积分10
2秒前
2秒前
Lavender发布了新的文献求助10
2秒前
3秒前
小马甲应助lmn采纳,获得10
4秒前
4秒前
华仔应助山山而川采纳,获得10
4秒前
4秒前
4秒前
ZCM完成签到,获得积分10
4秒前
在水一方应助何哈哈采纳,获得10
5秒前
CipherSage应助优秀猫咪采纳,获得10
5秒前
5秒前
5秒前
木又权发布了新的文献求助10
5秒前
麒麟完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Zuya发布了新的文献求助10
6秒前
6秒前
月亮发布了新的文献求助10
7秒前
poison完成签到,获得积分10
7秒前
keyab发布了新的文献求助10
7秒前
开心成协应助研友_nxyqXZ采纳,获得30
8秒前
oasis完成签到,获得积分10
8秒前
Zhangll发布了新的文献求助10
8秒前
爱学习的猫完成签到,获得积分10
8秒前
9秒前
kaka7发布了新的文献求助10
9秒前
咚咚咚发布了新的文献求助10
9秒前
10秒前
11秒前
关我屁事发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233