亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:16
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
虾滑完成签到,获得积分10
6秒前
12秒前
sutharsons应助ceeray23采纳,获得111
21秒前
zhxi给zhxi的求助进行了留言
45秒前
56秒前
阿泽完成签到,获得积分10
58秒前
哈哈嘻嘻完成签到,获得积分10
1分钟前
ChenW.完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
mumu完成签到 ,获得积分10
1分钟前
小二郎应助dzll采纳,获得10
1分钟前
稳重的寒梦完成签到,获得积分20
1分钟前
Jasper应助快乐的慕青采纳,获得10
1分钟前
1分钟前
慕青应助哈哈哈采纳,获得10
1分钟前
dzll发布了新的文献求助10
1分钟前
1分钟前
江上烟发布了新的文献求助10
1分钟前
彦子完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助江上烟采纳,获得30
1分钟前
ring发布了新的文献求助10
1分钟前
ring完成签到,获得积分20
2分钟前
2分钟前
2分钟前
栗子应助勤劳怜寒采纳,获得10
2分钟前
柔弱紊发布了新的文献求助10
2分钟前
小蘑菇应助rain采纳,获得10
2分钟前
2分钟前
阳光的访烟完成签到,获得积分20
2分钟前
2分钟前
dax大雄完成签到 ,获得积分10
2分钟前
2分钟前
勤劳怜寒完成签到,获得积分10
2分钟前
cheng完成签到,获得积分10
2分钟前
zhxi完成签到,获得积分20
3分钟前
zhxi发布了新的文献求助10
3分钟前
NS完成签到,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240082
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533176
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384