亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Myocardial Infarction From 12-Lead ECG Trace Images Using Eigendomain Deep Representation Learning

人工智能 模式识别(心理学) 计算机科学 深度学习 特征提取 心电图 心肌梗塞 特征(语言学) 心脏病学 医学 语言学 哲学
作者
Sathvik Bhaskarpandit,Anurag Gade,Shaswati Dash,Dinesh Kumar Dash,Rajesh Kumar Tripathy,Ram Bilas Pachori
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3241986
摘要

Myocardial infarction (MI) is a life-debilitating emergency in which there is a lack of blood flow in the heart muscle, resulting in permanent damage to the myocardium and sudden cardiac death. The 12-lead electrocardiogram (ECG) is a standardized diagnostic test conducted in hospitals to detect and localize MI-based heart disease. To diagnose MI, the cardiologist visualizes the alternations in the patterns of the 12-lead-based ECG trace image. The automated detection of MI from the 12-lead-based ECG trace image using artificial intelligence (AI)-based approaches is important in the clinical study for the accurate diagnosis of MI disease. This article proposes a novel eigendomain-based deep representation learning (DRL) approach to automatically detect MI using 12-lead ECG trace images. The singular value decomposition (SVD) and eigendomain grouping are used to evaluate five modes or components from the 12-lead ECG trace image. The EfficientNetV2B2-based transfer learning model extracts feature maps from the 12-lead ECG trace image and all five modes. The global average pooling (GAP), batch normalization (BN), dropout, and soft-max layers are used for each feature map to obtain the probability scores. The concatenated probability scores of all the feature maps, followed by the dense layer and output layer, are used to detect MI. A public database containing the 12-lead ECG trace images is used to evaluate the performance of the proposed approach. The results show that for the MI class, the proposed approach has achieved the accuracy value of 100%. Similarly, for normal versus MI versus other cardiac-arrhythmia-based disease classification schemes, the proposed approach has obtained the overall accuracy, F1-score, specificity, and sensitivity values of 99.03%, 99.01%, 99.49%, and 98.96%, respectively using fivefold cross-validation (CV). The suggested approach has demonstrated higher overall accuracy than 24 existing transfer-learning-based models to detect MI using the 12-lead ECG trace images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suda发布了新的文献求助10
刚刚
ganson完成签到 ,获得积分10
4秒前
热心易绿完成签到 ,获得积分10
12秒前
14秒前
拉长的鼠标完成签到,获得积分20
18秒前
张灵娜发布了新的文献求助10
21秒前
刘傻完成签到,获得积分10
25秒前
认真的幻姬完成签到,获得积分10
27秒前
27秒前
清脆靳发布了新的文献求助10
30秒前
噗尼噗尼发布了新的文献求助10
33秒前
科研通AI2S应助Pluto采纳,获得10
34秒前
36秒前
夜轩岚完成签到,获得积分10
39秒前
帅气书白完成签到 ,获得积分10
40秒前
起司猫完成签到 ,获得积分10
40秒前
KekeJ完成签到,获得积分10
41秒前
CodeCraft应助张灵娜采纳,获得10
44秒前
KekeJ发布了新的文献求助20
45秒前
星点完成签到 ,获得积分10
46秒前
47秒前
50秒前
结实星星发布了新的文献求助10
52秒前
落后博发布了新的文献求助10
55秒前
55秒前
英姑应助Yuan采纳,获得10
56秒前
57秒前
赘婿应助眉间尺采纳,获得10
59秒前
lew发布了新的文献求助10
1分钟前
脑袋瓜发布了新的文献求助10
1分钟前
1分钟前
runtang完成签到,获得积分10
1分钟前
噗尼噗尼关注了科研通微信公众号
1分钟前
十月完成签到 ,获得积分10
1分钟前
ZZC10发布了新的文献求助10
1分钟前
1分钟前
结实星星发布了新的文献求助10
1分钟前
眉间尺发布了新的文献求助10
1分钟前
脑袋瓜完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564793
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689045
捐赠科研通 4591504
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462853