亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 化学 基因 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
虞鱼瑜发布了新的文献求助10
31秒前
42秒前
44秒前
傅夜山发布了新的文献求助10
47秒前
丫丫完成签到,获得积分10
54秒前
Echopotter发布了新的文献求助30
1分钟前
Echopotter完成签到,获得积分10
1分钟前
2分钟前
丫丫发布了新的文献求助20
2分钟前
淡淡醉波wuliao完成签到 ,获得积分10
2分钟前
学习使勇哥进步完成签到 ,获得积分10
2分钟前
Owen应助虞鱼瑜采纳,获得10
2分钟前
gszy1975完成签到,获得积分10
3分钟前
傅夜山发布了新的文献求助30
3分钟前
共享精神应助林屿溪采纳,获得10
3分钟前
兴奋道罡完成签到,获得积分10
3分钟前
4分钟前
林屿溪发布了新的文献求助10
4分钟前
王肥肥完成签到,获得积分20
4分钟前
4分钟前
海洋岩土12138完成签到 ,获得积分10
5分钟前
科研通AI2S应助林屿溪采纳,获得10
5分钟前
6分钟前
xiaorui完成签到,获得积分20
6分钟前
luckyalias完成签到 ,获得积分10
7分钟前
魏白晴完成签到,获得积分10
7分钟前
8分钟前
9分钟前
10分钟前
10分钟前
大模型应助蓝_1995采纳,获得10
10分钟前
共享精神应助玥1采纳,获得10
10分钟前
蓝_1995完成签到,获得积分10
10分钟前
10分钟前
Kevin发布了新的文献求助30
10分钟前
10分钟前
玥1发布了新的文献求助10
10分钟前
蓝_1995发布了新的文献求助10
10分钟前
jiajia完成签到,获得积分10
11分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171568
求助须知:如何正确求助?哪些是违规求助? 2822431
关于积分的说明 7939235
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322935
科研通“疑难数据库(出版商)”最低求助积分说明 633809
版权声明 602647