Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 基因 化学 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goodltl完成签到 ,获得积分10
刚刚
Lig完成签到,获得积分10
刚刚
咿呀呀完成签到,获得积分10
1秒前
吃面的章鱼完成签到,获得积分10
1秒前
1秒前
郁赹完成签到,获得积分10
2秒前
ybyb发布了新的文献求助10
2秒前
2秒前
我爱陶子完成签到 ,获得积分10
3秒前
3秒前
ZixuanZhang发布了新的文献求助10
4秒前
hhcai发布了新的文献求助10
5秒前
积极的糖豆完成签到 ,获得积分10
6秒前
槑槑不好玩完成签到 ,获得积分10
7秒前
葵魁发布了新的文献求助10
7秒前
QQ发布了新的文献求助10
7秒前
mr_beard完成签到 ,获得积分10
7秒前
8秒前
WangSiwei完成签到,获得积分10
8秒前
lihaichuan完成签到,获得积分10
8秒前
shinen完成签到,获得积分10
8秒前
9秒前
赘婿应助小样采纳,获得10
10秒前
所所应助许砚采纳,获得10
11秒前
小黑之家完成签到,获得积分10
12秒前
13秒前
平淡夜柳发布了新的文献求助30
13秒前
13秒前
wen完成签到,获得积分10
14秒前
完美世界应助QQ采纳,获得10
14秒前
okiya发布了新的文献求助10
15秒前
常尽欢完成签到 ,获得积分10
16秒前
子车半烟完成签到,获得积分10
16秒前
zt完成签到,获得积分10
16秒前
16秒前
17秒前
LW完成签到 ,获得积分10
17秒前
zcydbttj2011完成签到 ,获得积分10
17秒前
科研通AI2S应助粗心的沉鱼采纳,获得10
18秒前
eric888应助乐观的颦采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294873
求助须知:如何正确求助?哪些是违规求助? 4444563
关于积分的说明 13833824
捐赠科研通 4328729
什么是DOI,文献DOI怎么找? 2376305
邀请新用户注册赠送积分活动 1371655
关于科研通互助平台的介绍 1336835