Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 基因 化学 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tt发布了新的文献求助20
刚刚
刚刚
11发布了新的文献求助10
2秒前
2秒前
3秒前
Bonfire发布了新的文献求助10
3秒前
4秒前
打打应助风中雅青采纳,获得30
6秒前
7秒前
凌羽婷发布了新的文献求助10
8秒前
8秒前
年禹发布了新的文献求助10
8秒前
Usin完成签到,获得积分10
9秒前
10秒前
铮铮铁骨发布了新的文献求助10
11秒前
周涨杰发布了新的文献求助10
12秒前
12秒前
蛋泥完成签到,获得积分10
13秒前
Dia完成签到,获得积分10
13秒前
13秒前
13秒前
在水一方应助feifei采纳,获得10
13秒前
文静谷冬完成签到 ,获得积分10
14秒前
前行的灿发布了新的文献求助10
14秒前
赵与成发布了新的文献求助10
14秒前
充电宝应助大气的画板采纳,获得10
14秒前
四季雪完成签到,获得积分10
15秒前
浮游应助Rookie采纳,获得10
15秒前
15秒前
淡淡乐巧完成签到,获得积分10
15秒前
顾矜应助fafa采纳,获得10
16秒前
火火发布了新的文献求助10
16秒前
17秒前
小森完成签到,获得积分10
18秒前
科研通AI6应助11采纳,获得10
18秒前
18秒前
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343