Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 基因 化学 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海纳百川完成签到,获得积分10
刚刚
1秒前
爆米花应助liufang采纳,获得10
1秒前
邱乐乐发布了新的文献求助150
2秒前
2秒前
连夜雪完成签到,获得积分10
2秒前
子车凡发布了新的文献求助10
2秒前
欣喜十八完成签到,获得积分10
2秒前
CC发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
Qiu完成签到,获得积分10
5秒前
5秒前
mmmaosheng完成签到,获得积分10
7秒前
啦啦啦完成签到,获得积分10
7秒前
7秒前
善学以致用应助随便采纳,获得10
7秒前
灰灰完成签到,获得积分10
8秒前
f1mike110发布了新的文献求助10
9秒前
陆倩完成签到,获得积分10
9秒前
天天快乐应助lihuahui采纳,获得10
10秒前
11秒前
让我毕业吧完成签到,获得积分10
11秒前
舒心完成签到 ,获得积分20
11秒前
CC完成签到,获得积分10
12秒前
Criminology34应助杨一乐采纳,获得10
12秒前
wanci应助细腻的夜天采纳,获得10
12秒前
李爱国应助工大搬砖战神采纳,获得10
12秒前
lalala发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Coai517完成签到 ,获得积分10
14秒前
14秒前
今后应助认真的TOTORO采纳,获得10
15秒前
复杂的含蕾完成签到 ,获得积分10
15秒前
...完成签到,获得积分10
16秒前
游一完成签到,获得积分10
16秒前
细雨听风完成签到,获得积分10
16秒前
胡佳文完成签到,获得积分10
17秒前
风吹麦田应助15169928657采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809