Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 基因 化学 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓完成签到,获得积分10
刚刚
123456789发布了新的文献求助10
2秒前
2秒前
田様应助扶余山本采纳,获得10
3秒前
su发布了新的文献求助10
4秒前
4秒前
Shelley发布了新的文献求助10
5秒前
幸福的羿完成签到 ,获得积分10
5秒前
過客发布了新的文献求助10
6秒前
6秒前
6秒前
123456789完成签到,获得积分20
9秒前
9秒前
CodeCraft应助扣扣尼哇采纳,获得10
10秒前
Oo发布了新的文献求助10
10秒前
Joie完成签到,获得积分10
10秒前
大圈圈发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
stars发布了新的文献求助20
12秒前
12秒前
仔仔发布了新的文献求助10
15秒前
WY发布了新的文献求助10
16秒前
小文发布了新的文献求助10
17秒前
共享精神应助胖头鱼采纳,获得10
17秒前
18秒前
19秒前
20秒前
领导范儿应助咔酱采纳,获得10
20秒前
Shelley完成签到,获得积分10
20秒前
倩Q完成签到,获得积分10
20秒前
21秒前
stars完成签到,获得积分10
22秒前
顾矜应助過客采纳,获得10
23秒前
楚狂接舆完成签到,获得积分10
23秒前
元小夏完成签到,获得积分10
23秒前
23秒前
zyw完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536101
求助须知:如何正确求助?哪些是违规求助? 3971559
关于积分的说明 12304409
捐赠科研通 3638366
什么是DOI,文献DOI怎么找? 2003117
邀请新用户注册赠送积分活动 1038682
科研通“疑难数据库(出版商)”最低求助积分说明 928079