Defense Against Adversarial Attacks with Efficient Frequency-Adaptive Compression and Reconstruction

对抗制 计算机科学 稳健性(进化) 人工智能 残余物 深层神经网络 集合(抽象数据类型) 人工神经网络 算法 生物化学 基因 化学 程序设计语言
作者
Zhong-Han Niu,Yu-Bin Yang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:138: 109382-109382 被引量:6
标识
DOI:10.1016/j.patcog.2023.109382
摘要

The increasing use of deep neural networks exposes themselves to adversarial attacks in the real world drawn from closed-set and open-set, which poses great threats to their application in safety-critical systems. Since adversarial attacks tend to mislead an original model by adding small perturbations into clean images, an intuitive idea of defensing adversarial attacks is eliminating perturbations as much as possible to mitigate attacking effects. However, such elimination-based strategies unfortunately fail to achieve satisfactory robustness. Aiming to investigate the intrinsic reasons for this phenomenon, systematic experiments are carried out in this paper to indicate that even a 20% residual perturbation can still preserve and exhibit attacking effects as strong as a full one. Our study also indicates that there are strong correlations between perturbations and legitimate images. Thus, breaking the correlation across multiple bands is more effective in mitigating attacking effects. Based on these findings, this paper proposes an efficient defense strategy called "Frequency-Adaptive Compression and rEconstruction (FACE)" to improve the robustness of the model to adversarial attacks. Specifically, low-frequency bands containing semantic information are compressed by a down-sampling operation, while the channel width of high-frequency bands is squeezed and further compressed by adding noise before the Tanh activating function. Meanwhile, attachment spaces of perturbations are also squeezed to the extent as much as possible. Finally, a clean output is obtained by upsampling together with expanded reconstruction. Experiments are extensively conducted on widely used datasets to demonstrate the effectiveness of the proposed method. For closed-set attacks, FACE outperforms the STOA elimination-based methods on ImageNet, achieving a 27.9% improvement. For the MNIST open-set attacks, it not only reduces the success rate of targeted attack by a large margin (from 100% to 24.7%), but also mitigates attacking effects with an FPR-95 value of 0.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨旱莲完成签到,获得积分10
刚刚
zzzqqq完成签到,获得积分10
刚刚
1秒前
懦弱的难敌完成签到,获得积分10
1秒前
布鲁斯盖完成签到,获得积分10
1秒前
SILENCE发布了新的文献求助10
1秒前
科研通AI2S应助Du采纳,获得10
1秒前
2秒前
2秒前
2秒前
我是老大应助李霞采纳,获得10
2秒前
277发布了新的文献求助20
2秒前
sherlym发布了新的文献求助10
3秒前
殷蝶完成签到,获得积分20
4秒前
稳重的如容完成签到,获得积分10
5秒前
少年完成签到,获得积分0
5秒前
慕青应助飘逸鸵鸟采纳,获得10
6秒前
6秒前
幽默的百川完成签到,获得积分10
6秒前
薛亚妮发布了新的文献求助10
7秒前
温言叮叮铛完成签到,获得积分10
7秒前
dong应助Pumpkin采纳,获得20
8秒前
穆萝完成签到,获得积分0
8秒前
完美世界应助yls采纳,获得10
9秒前
9秒前
9秒前
madmax完成签到,获得积分10
9秒前
9秒前
10秒前
bkagyin应助激昂的背包采纳,获得10
10秒前
木之木完成签到,获得积分0
10秒前
11秒前
CY完成签到,获得积分10
11秒前
132发布了新的文献求助30
12秒前
Lv完成签到,获得积分10
12秒前
Pursue完成签到,获得积分10
12秒前
苹果发布了新的文献求助10
13秒前
13秒前
受伤的小松鼠完成签到,获得积分10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582