Automatic classification and segmentation of atherosclerotic plaques in the intravascular optical coherence tomography (IVOCT)

分割 光学相干层析成像 管腔(解剖学) 计算机科学 人工智能 Sørensen–骰子系数 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 外科
作者
Hui Tang,Zhenquan Zhang,Yanglong He,Jinhua Shen,Jin Zheng,Wei Gao,Umar Sadat,Mingxin Wang,Yupeng Wang,Xu Ji,Yang Chen,Zhongzhao Teng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104888-104888 被引量:3
标识
DOI:10.1016/j.bspc.2023.104888
摘要

Intravascular optical coherence tomography (IVOCT) is capable of delineating peri-luminal region, including thin fibrous cap, calcium, lipid and thrombus. The segmentation result of these plaques is needed when calculating some useful diagnostic indicators, such as the minimum fiber cap thickness or the maximum Plaque Structural Stress (PSS), to help the diagnosis of vulnerable plaque. Since only some images contain plaques, in order to simplify the network architecture, we designed a three-step framework with single task for each step in this paper to realize the machine learning based pixel-level semantic segmentation of plaque in IVOCT. A three-step framework is designed: lumen segmentation, image classification and plaque semantic segmentation. Firstly, the lumen of IVOCT is segmented using U-Net. Then the patches are cropped along the lumen boundary, and the plaques in the patches are classified and merged to get whether the original image contains calcium or lipid plaque. In the classification procedure, a self-attention module is introduced into ResNet to form the improved self-attention ResNet. Finally, the selected images with plaque are segmented to get the pixel-level segmentation results of each plaque component, which is realized by an combined network composed by convolutional auto encoder and U-Net. In the lumen segmentation step, the Dice coefficient is greater than 95%. In the classification step, the classification precision, sensitivity and specificity of calcium plaque are all 100%; and that of lipid plaque are 97%, 100% and 94% respectively. In the final segmentation step, the Dice coefficient of calcium plaque is 71.8% and that of lipid plaque is 60.5%; the sensitivity of calcium plaque is 78.4% and that of lipid plaque is 80.2%. The experiments show that compared to some commonly used networks the proposed method achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科目三应助yi采纳,获得10
刚刚
刚刚
chanvze完成签到,获得积分10
刚刚
刚刚
黙宇循光发布了新的文献求助10
1秒前
打打应助丰富青文采纳,获得10
1秒前
1秒前
JayeChen发布了新的文献求助10
1秒前
1秒前
xxfsx举报满意的胡萝卜求助涉嫌违规
2秒前
2秒前
shinble发布了新的文献求助30
3秒前
xxxx完成签到,获得积分10
3秒前
Katrina应助西海焖面采纳,获得10
3秒前
znchick发布了新的文献求助30
4秒前
享音发布了新的文献求助30
4秒前
伊叶之丘完成签到 ,获得积分10
4秒前
5秒前
5秒前
YYJJHH发布了新的文献求助10
5秒前
现代大神发布了新的文献求助10
5秒前
高贵语海发布了新的文献求助10
6秒前
suuting完成签到 ,获得积分10
6秒前
小吴发布了新的文献求助10
6秒前
7秒前
7秒前
我是老大应助yi采纳,获得10
7秒前
小杭76应助热心的易蓉采纳,获得10
7秒前
大模型应助俭朴听双采纳,获得10
8秒前
朱古力完成签到 ,获得积分10
8秒前
包若烟发布了新的文献求助10
8秒前
TK驳回了CipherSage应助
9秒前
CipherSage应助简单勒采纳,获得10
9秒前
10秒前
10秒前
何博发布了新的文献求助10
10秒前
所所应助YYJJHH采纳,获得10
10秒前
hough完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Social work values and ethics (6th ed.) 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5180491
求助须知:如何正确求助?哪些是违规求助? 4367921
关于积分的说明 13600823
捐赠科研通 4218743
什么是DOI,文献DOI怎么找? 2313774
邀请新用户注册赠送积分活动 1312578
关于科研通互助平台的介绍 1261128