Automatic classification and segmentation of atherosclerotic plaques in the intravascular optical coherence tomography (IVOCT)

分割 光学相干层析成像 管腔(解剖学) 计算机科学 人工智能 Sørensen–骰子系数 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 外科
作者
Hui Tang,Zhenquan Zhang,Yanglong He,Jinhua Shen,Jin Zheng,Wei Gao,Umar Sadat,Mingxin Wang,Yupeng Wang,Xu Ji,Yang Chen,Zhongzhao Teng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:85: 104888-104888 被引量:3
标识
DOI:10.1016/j.bspc.2023.104888
摘要

Intravascular optical coherence tomography (IVOCT) is capable of delineating peri-luminal region, including thin fibrous cap, calcium, lipid and thrombus. The segmentation result of these plaques is needed when calculating some useful diagnostic indicators, such as the minimum fiber cap thickness or the maximum Plaque Structural Stress (PSS), to help the diagnosis of vulnerable plaque. Since only some images contain plaques, in order to simplify the network architecture, we designed a three-step framework with single task for each step in this paper to realize the machine learning based pixel-level semantic segmentation of plaque in IVOCT. A three-step framework is designed: lumen segmentation, image classification and plaque semantic segmentation. Firstly, the lumen of IVOCT is segmented using U-Net. Then the patches are cropped along the lumen boundary, and the plaques in the patches are classified and merged to get whether the original image contains calcium or lipid plaque. In the classification procedure, a self-attention module is introduced into ResNet to form the improved self-attention ResNet. Finally, the selected images with plaque are segmented to get the pixel-level segmentation results of each plaque component, which is realized by an combined network composed by convolutional auto encoder and U-Net. In the lumen segmentation step, the Dice coefficient is greater than 95%. In the classification step, the classification precision, sensitivity and specificity of calcium plaque are all 100%; and that of lipid plaque are 97%, 100% and 94% respectively. In the final segmentation step, the Dice coefficient of calcium plaque is 71.8% and that of lipid plaque is 60.5%; the sensitivity of calcium plaque is 78.4% and that of lipid plaque is 80.2%. The experiments show that compared to some commonly used networks the proposed method achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
463关注了科研通微信公众号
2秒前
2秒前
2秒前
哭泣的雪巧完成签到,获得积分10
2秒前
KingYugene发布了新的文献求助10
3秒前
4秒前
4秒前
YBY完成签到,获得积分10
4秒前
研友_VZG7GZ应助leslie采纳,获得50
4秒前
5秒前
高亭亭给高亭亭的求助进行了留言
6秒前
arui发布了新的文献求助10
8秒前
zy关闭了zy文献求助
9秒前
在水一方应助自然的秋尽采纳,获得10
11秒前
大白不白发布了新的文献求助10
11秒前
Wtian发布了新的文献求助10
13秒前
科目三应助ZHEN采纳,获得10
14秒前
14秒前
15秒前
精明的成败完成签到,获得积分10
16秒前
Zzzlay完成签到,获得积分10
17秒前
依依完成签到 ,获得积分10
17秒前
小美发布了新的文献求助10
18秒前
19秒前
科研通AI6应助arui采纳,获得10
22秒前
苦咖啡完成签到,获得积分10
22秒前
22秒前
风中雅青发布了新的文献求助30
23秒前
23秒前
gjq完成签到,获得积分10
23秒前
蕨根蕨根发布了新的文献求助10
24秒前
24秒前
24秒前
平常书雪完成签到,获得积分10
26秒前
26秒前
chen发布了新的文献求助10
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
一团毛线完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457723
求助须知:如何正确求助?哪些是违规求助? 4563994
关于积分的说明 14293028
捐赠科研通 4488769
什么是DOI,文献DOI怎么找? 2458704
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343