Automatic classification and segmentation of atherosclerotic plaques in the intravascular optical coherence tomography (IVOCT)

分割 光学相干层析成像 管腔(解剖学) 计算机科学 人工智能 Sørensen–骰子系数 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 外科
作者
Hui Tang,Zhenquan Zhang,Yanglong He,Jinhua Shen,Jin Zheng,Wei Gao,Umar Sadat,Mingxin Wang,Yupeng Wang,Xu Ji,Yang Chen,Zhongzhao Teng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104888-104888 被引量:3
标识
DOI:10.1016/j.bspc.2023.104888
摘要

Intravascular optical coherence tomography (IVOCT) is capable of delineating peri-luminal region, including thin fibrous cap, calcium, lipid and thrombus. The segmentation result of these plaques is needed when calculating some useful diagnostic indicators, such as the minimum fiber cap thickness or the maximum Plaque Structural Stress (PSS), to help the diagnosis of vulnerable plaque. Since only some images contain plaques, in order to simplify the network architecture, we designed a three-step framework with single task for each step in this paper to realize the machine learning based pixel-level semantic segmentation of plaque in IVOCT. A three-step framework is designed: lumen segmentation, image classification and plaque semantic segmentation. Firstly, the lumen of IVOCT is segmented using U-Net. Then the patches are cropped along the lumen boundary, and the plaques in the patches are classified and merged to get whether the original image contains calcium or lipid plaque. In the classification procedure, a self-attention module is introduced into ResNet to form the improved self-attention ResNet. Finally, the selected images with plaque are segmented to get the pixel-level segmentation results of each plaque component, which is realized by an combined network composed by convolutional auto encoder and U-Net. In the lumen segmentation step, the Dice coefficient is greater than 95%. In the classification step, the classification precision, sensitivity and specificity of calcium plaque are all 100%; and that of lipid plaque are 97%, 100% and 94% respectively. In the final segmentation step, the Dice coefficient of calcium plaque is 71.8% and that of lipid plaque is 60.5%; the sensitivity of calcium plaque is 78.4% and that of lipid plaque is 80.2%. The experiments show that compared to some commonly used networks the proposed method achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾应助pakiorder采纳,获得10
5秒前
wxy完成签到,获得积分10
6秒前
分析完成签到 ,获得积分10
6秒前
hulin_zjxu完成签到,获得积分10
6秒前
桃紫完成签到,获得积分10
8秒前
小董不懂完成签到,获得积分10
9秒前
椰子完成签到,获得积分10
9秒前
沐沐溪三清完成签到,获得积分10
9秒前
10秒前
刘丰完成签到 ,获得积分10
12秒前
郑桂庆完成签到 ,获得积分10
13秒前
zhang完成签到 ,获得积分10
13秒前
yuchen完成签到,获得积分10
14秒前
喜悦的水云完成签到 ,获得积分10
14秒前
15秒前
zhaokunfeng完成签到,获得积分10
15秒前
Y123发布了新的文献求助10
15秒前
wu完成签到,获得积分10
15秒前
高高诗柳完成签到 ,获得积分10
15秒前
王金豪完成签到,获得积分10
15秒前
LSS完成签到,获得积分10
15秒前
榜一大哥的负担完成签到 ,获得积分10
16秒前
Lucas应助qi0625采纳,获得10
16秒前
顾矜应助以筱采纳,获得10
17秒前
景清完成签到,获得积分10
17秒前
细心香烟完成签到 ,获得积分10
17秒前
hu完成签到 ,获得积分10
17秒前
HQ完成签到,获得积分10
17秒前
18秒前
水清木华完成签到,获得积分10
18秒前
19秒前
miao完成签到,获得积分20
19秒前
xyp_zjut应助学术乞丐采纳,获得10
19秒前
Lucas应助凉白开采纳,获得10
19秒前
体贴凌柏发布了新的文献求助10
20秒前
20秒前
20秒前
鹿子完成签到 ,获得积分10
20秒前
秋枫忆完成签到,获得积分10
22秒前
宋立发布了新的文献求助10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029