Automatic classification and segmentation of atherosclerotic plaques in the intravascular optical coherence tomography (IVOCT)

分割 光学相干层析成像 管腔(解剖学) 计算机科学 人工智能 Sørensen–骰子系数 计算机视觉 图像分割 模式识别(心理学) 医学 放射科 外科
作者
Hui Tang,Zhenquan Zhang,Yanglong He,Jinhua Shen,Jin Zheng,Wei Gao,Umar Sadat,Mingxin Wang,Yupeng Wang,Xu Ji,Yang Chen,Zhongzhao Teng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:85: 104888-104888 被引量:3
标识
DOI:10.1016/j.bspc.2023.104888
摘要

Intravascular optical coherence tomography (IVOCT) is capable of delineating peri-luminal region, including thin fibrous cap, calcium, lipid and thrombus. The segmentation result of these plaques is needed when calculating some useful diagnostic indicators, such as the minimum fiber cap thickness or the maximum Plaque Structural Stress (PSS), to help the diagnosis of vulnerable plaque. Since only some images contain plaques, in order to simplify the network architecture, we designed a three-step framework with single task for each step in this paper to realize the machine learning based pixel-level semantic segmentation of plaque in IVOCT. A three-step framework is designed: lumen segmentation, image classification and plaque semantic segmentation. Firstly, the lumen of IVOCT is segmented using U-Net. Then the patches are cropped along the lumen boundary, and the plaques in the patches are classified and merged to get whether the original image contains calcium or lipid plaque. In the classification procedure, a self-attention module is introduced into ResNet to form the improved self-attention ResNet. Finally, the selected images with plaque are segmented to get the pixel-level segmentation results of each plaque component, which is realized by an combined network composed by convolutional auto encoder and U-Net. In the lumen segmentation step, the Dice coefficient is greater than 95%. In the classification step, the classification precision, sensitivity and specificity of calcium plaque are all 100%; and that of lipid plaque are 97%, 100% and 94% respectively. In the final segmentation step, the Dice coefficient of calcium plaque is 71.8% and that of lipid plaque is 60.5%; the sensitivity of calcium plaque is 78.4% and that of lipid plaque is 80.2%. The experiments show that compared to some commonly used networks the proposed method achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野未来发布了新的文献求助10
1秒前
花露水完成签到,获得积分20
1秒前
1秒前
2秒前
小蘑菇应助咔咔采纳,获得10
4秒前
qzp发布了新的文献求助10
4秒前
leaolf应助称心曼安采纳,获得20
4秒前
顺心的巨人完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
项目多多完成签到,获得积分10
5秒前
5秒前
欢呼的冰蝶完成签到,获得积分10
5秒前
田様应助msy1998采纳,获得10
5秒前
6秒前
drdouxia发布了新的文献求助10
6秒前
老黄鱼完成签到,获得积分10
6秒前
宁人完成签到,获得积分10
6秒前
科研通AI5应助jyyg采纳,获得10
7秒前
蜒栩柚子完成签到 ,获得积分10
7秒前
明亮玉米完成签到,获得积分10
7秒前
我2023发布了新的文献求助10
7秒前
8秒前
harrison关注了科研通微信公众号
9秒前
harrison关注了科研通微信公众号
9秒前
fox完成签到 ,获得积分10
9秒前
李健应助梦玲采纳,获得10
10秒前
朱sq发布了新的文献求助10
10秒前
华仔应助宁人采纳,获得10
10秒前
桐桐应助可爱deyi采纳,获得10
11秒前
科研狗完成签到 ,获得积分10
11秒前
周周完成签到,获得积分10
11秒前
12秒前
Niko发布了新的文献求助30
12秒前
求助发布了新的文献求助10
12秒前
12秒前
12秒前
无梦亦无影完成签到 ,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513