重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

[Data mining in traditional Chinese medicine product quality review].

质量(理念) 计算机科学 产品(数学) 过程(计算) 数据挖掘 数据预处理 回归分析 变量 风险分析(工程) 数学 业务 机器学习 哲学 几何学 认识论 操作系统
作者
Sheng Zhang,Hou-Liu Chen,Haibin Qu
出处
期刊:PubMed 卷期号:48 (5): 1264-1272 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20221128.301
摘要

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助白小白采纳,获得10
1秒前
许小六发布了新的文献求助10
1秒前
思源应助wwww采纳,获得10
2秒前
2秒前
uuu完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助冰冰大王采纳,获得10
3秒前
陈大星啊完成签到,获得积分10
3秒前
3秒前
3秒前
机智西牛关注了科研通微信公众号
3秒前
3秒前
卷卷完成签到 ,获得积分10
4秒前
jyh应助李李采纳,获得10
4秒前
5秒前
mm发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
阳光沛柔发布了新的文献求助10
6秒前
李健应助陈大星啊采纳,获得10
7秒前
8秒前
8秒前
热情的戾发布了新的文献求助10
9秒前
xiaostou发布了新的文献求助10
9秒前
共享精神应助liling采纳,获得10
9秒前
9秒前
9秒前
刘青完成签到,获得积分10
10秒前
FLZLC发布了新的文献求助10
11秒前
上官若男应助霸王龙采纳,获得10
11秒前
不知名网友完成签到 ,获得积分10
12秒前
落寞棒棒糖完成签到 ,获得积分10
12秒前
追风者发布了新的文献求助10
12秒前
ran完成签到,获得积分10
12秒前
古月发布了新的文献求助10
12秒前
大个应助波恰采纳,获得10
12秒前
kai完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545