[Data mining in traditional Chinese medicine product quality review].

质量(理念) 计算机科学 产品(数学) 过程(计算) 数据挖掘 数据预处理 回归分析 变量 风险分析(工程) 数学 业务 机器学习 哲学 几何学 认识论 操作系统
作者
Sheng Zhang,Hou-Liu Chen,Haibin Qu
出处
期刊:PubMed 卷期号:48 (5): 1264-1272 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20221128.301
摘要

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Hello应助发文章12138采纳,获得10
1秒前
1秒前
孙浩洋发布了新的文献求助10
1秒前
LL关闭了LL文献求助
1秒前
春意盎然完成签到,获得积分10
1秒前
chenyao发布了新的文献求助10
1秒前
1秒前
1秒前
李扒皮完成签到,获得积分10
1秒前
所所应助你维好困采纳,获得10
2秒前
CodeCraft应助你维好困采纳,获得10
2秒前
吕亦寒完成签到,获得积分10
2秒前
Jasper应助清浅采纳,获得10
2秒前
whiteandpink098完成签到,获得积分10
2秒前
3秒前
3秒前
野性的牛排完成签到,获得积分10
3秒前
连长发布了新的文献求助10
3秒前
李健应助ernest采纳,获得10
3秒前
Jasper应助love454106采纳,获得10
4秒前
WTL完成签到,获得积分10
4秒前
追光者完成签到,获得积分10
5秒前
5秒前
赘婿应助萤火虫采纳,获得10
5秒前
hbb完成签到,获得积分20
6秒前
6秒前
Huang发布了新的文献求助10
7秒前
Akim应助1a采纳,获得10
7秒前
7秒前
婷123发布了新的文献求助10
7秒前
李爱国应助Voyage采纳,获得10
7秒前
材料小白发布了新的文献求助10
8秒前
德容发布了新的文献求助10
8秒前
怡然的魔镜完成签到,获得积分10
8秒前
Leon Lai发布了新的文献求助10
8秒前
辛勤雨柏完成签到,获得积分10
8秒前
汉堡包应助快乐电灯胆采纳,获得10
9秒前
9秒前
某某发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006