[Data mining in traditional Chinese medicine product quality review].

质量(理念) 计算机科学 产品(数学) 过程(计算) 数据挖掘 数据预处理 回归分析 变量 风险分析(工程) 数学 业务 机器学习 哲学 几何学 认识论 操作系统
作者
Sheng Zhang,Hou-Liu Chen,Haibin Qu
出处
期刊:PubMed 卷期号:48 (5): 1264-1272 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20221128.301
摘要

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
没食子酸完成签到,获得积分10
刚刚
1秒前
无极微光应助Jia采纳,获得20
2秒前
胡杨树2006完成签到,获得积分10
3秒前
fujun0095发布了新的文献求助10
4秒前
4秒前
4秒前
wxy发布了新的文献求助10
5秒前
zhaoyue完成签到 ,获得积分10
7秒前
科研狗的春天完成签到 ,获得积分10
8秒前
筷子夹豆腐脑完成签到,获得积分10
9秒前
9秒前
Jenny发布了新的文献求助10
10秒前
Estrella发布了新的文献求助10
10秒前
dandna完成签到 ,获得积分10
10秒前
晴心完成签到,获得积分10
14秒前
苹果鱼完成签到,获得积分10
15秒前
DD完成签到,获得积分10
15秒前
张二田发布了新的文献求助10
16秒前
tracer526发布了新的文献求助10
16秒前
萨尔莫斯发布了新的文献求助10
17秒前
22秒前
王佳俊完成签到,获得积分10
23秒前
23秒前
24秒前
Owen应助辜卅采纳,获得10
26秒前
26秒前
ding应助wxy采纳,获得10
32秒前
科研通AI6应助fujun0095采纳,获得10
38秒前
39秒前
萨尔莫斯发布了新的文献求助10
48秒前
48秒前
Minnie完成签到,获得积分10
49秒前
Jenny完成签到,获得积分20
52秒前
54秒前
背后的若之完成签到 ,获得积分10
55秒前
56秒前
56秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951