[Data mining in traditional Chinese medicine product quality review].

质量(理念) 计算机科学 产品(数学) 过程(计算) 数据挖掘 数据预处理 回归分析 变量 风险分析(工程) 数学 业务 机器学习 哲学 几何学 认识论 操作系统
作者
Sheng Zhang,Hou-Liu Chen,Haibin Qu
出处
期刊:PubMed 卷期号:48 (5): 1264-1272 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20221128.301
摘要

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助内向秋寒采纳,获得10
2秒前
sfafasfsdf完成签到,获得积分10
2秒前
2秒前
luuuuuu发布了新的文献求助10
3秒前
lai发布了新的文献求助30
3秒前
3秒前
zrk发布了新的文献求助10
3秒前
3秒前
4秒前
ZJJ完成签到,获得积分10
4秒前
花开的声音1217完成签到,获得积分10
5秒前
古药完成签到,获得积分10
6秒前
赘婿应助烟雨行舟采纳,获得10
6秒前
seal发布了新的文献求助10
7秒前
7秒前
8秒前
不吃香菜发布了新的文献求助10
8秒前
RC_Wang应助ZJJ采纳,获得10
8秒前
Chridy发布了新的文献求助10
9秒前
9秒前
asipilin完成签到,获得积分10
9秒前
鼻揩了转去应助lixoii采纳,获得20
9秒前
10秒前
万能图书馆应助Steve采纳,获得10
11秒前
11秒前
11秒前
颛颛完成签到 ,获得积分10
12秒前
不安钢铁侠完成签到,获得积分10
12秒前
学术z完成签到,获得积分10
12秒前
小二郎应助yty采纳,获得10
12秒前
神帅酷哥完成签到,获得积分10
14秒前
14秒前
ljw完成签到,获得积分10
14秒前
xzy发布了新的文献求助20
14秒前
14秒前
守夜人发布了新的文献求助10
15秒前
15秒前
15秒前
珲雯发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794