[Data mining in traditional Chinese medicine product quality review].

质量(理念) 计算机科学 产品(数学) 过程(计算) 数据挖掘 数据预处理 回归分析 变量 风险分析(工程) 数学 业务 机器学习 哲学 几何学 认识论 操作系统
作者
Sheng Zhang,Hou-Liu Chen,Haibin Qu
出处
期刊:PubMed 卷期号:48 (5): 1264-1272 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20221128.301
摘要

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
路十三完成签到,获得积分10
1秒前
sweetsbt发布了新的文献求助10
2秒前
2秒前
CipherSage应助曹曹采纳,获得10
2秒前
Rwmqwq完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
程旭完成签到,获得积分10
5秒前
Hello应助栗子鱼采纳,获得10
5秒前
科研通AI2S应助hh采纳,获得10
5秒前
赘婿应助MangoGreentea采纳,获得10
5秒前
科研通AI5应助莹66采纳,获得10
5秒前
5秒前
不加糖完成签到,获得积分10
5秒前
6秒前
lorieeee发布了新的文献求助10
6秒前
6秒前
无花果应助边夫人采纳,获得10
6秒前
蜡笔小新发布了新的文献求助10
7秒前
三六九发布了新的文献求助10
7秒前
科研通AI5应助游悠悠采纳,获得10
7秒前
莫西莫西完成签到,获得积分10
8秒前
8秒前
Panmm发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
灵巧土豆发布了新的文献求助10
9秒前
工大搬砖战神完成签到,获得积分10
10秒前
10秒前
小马甲应助Yolanda采纳,获得10
11秒前
11秒前
sweetsbt完成签到,获得积分10
11秒前
11秒前
zej发布了新的文献求助10
11秒前
科研通AI5应助大力的映梦采纳,获得10
11秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748349
求助须知:如何正确求助?哪些是违规求助? 3291273
关于积分的说明 10072452
捐赠科研通 3006950
什么是DOI,文献DOI怎么找? 1651463
邀请新用户注册赠送积分活动 786353
科研通“疑难数据库(出版商)”最低求助积分说明 751660