Abstract 5726: Pan-cancer proteogenomics expands the landscape of therapeutic targets

可药性 蛋白质基因组学 生物 癌症 蛋白质组学 计算生物学 磷酸蛋白质组学 效应器 UniProt公司 靶向治疗 药物发现 癌症研究 生物信息学 基因组学 激酶 蛋白激酶A 遗传学 蛋白质磷酸化 基因 基因组 免疫学
作者
Jonathan T. Lei,Sara R. Savage,Xinpei Yi,Bin Wen,Hongwei Zhao,Lauren K. Somes,Paul Shafer,Yongchao Dou,Qiang Gao,Valentina Hoyos,Bing Zhang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5726-5726
标识
DOI:10.1158/1538-7445.am2023-5726
摘要

Abstract Background: Molecularly targeted therapies are critical for improving cancer treatment. Since proteins are the targets of these therapies and functional effectors of genomic aberrations, proteogenomics data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) provides an unprecedented opportunity to characterize existing and future therapeutic targets for cancer treatment. Approach: CPTAC proteogenomics data from >1000 cancer patients spanning 10 cancer types was used to evaluate current and potential therapeutic targets curated from four databases. Cell line data from DepMap was further integrated to distinguish causations from associations. Computational pipelines were deployed to identify synthetic lethality for targeting tumor suppressor loss and to prioritize tumor associated antigens as immunotherapy targets. Results: We systematically collected 3050 druggable proteins and classified them into 5 tiers to facilitate different applications such as companion diagnostics, drug repurposing, and new therapy development. Many druggable proteins showed poor mRNA-protein correlation, including secreted proteins and proteins whose abundance was correlated with their interaction partners instead of cognate mRNA, highlighting the necessity of direct proteomic quantification of drug targets. 618 druggable proteins showed both overexpression in tumors compared to normal and significant dependency in CRISPR-Cas9 screens of cell lines of the same lineage. Notably, PAK1, a kinase targeted by investigational drugs, demonstrated both overexpression and dependency in all cancer types. A similar analysis of phosphoproteomics data focusing on known activating sites of druggable proteins further revealed targetable dependencies driven by protein hyperactivation. The phosphosite pS50 on PTPN1, a phosphatase targeted by experimental drugs, was increased in 7 cancer types and PTPN1 demonstrated dependency in related cancer cell lines. Based on tumor proteogenomic data and cell line CRISPR-Cas9 screen data, we identified synthetic lethality for difficult to target tumor suppressor losses, revealing TP53 mutations as a candidate biomarker to select breast cancer patients for CHEK1 inhibition, and endometrial cancer patients for treatment with doxorubicin. We identified 140 proteins whose expression was restricted in normal tissues but abnormal in tumors. Experimental analysis of peptides predicted to have high binding affinity to the most common allotype HLA-A02 for 7 prioritized proteins identified 21 peptides from 5 proteins with both strong binding affinity and immunogenicity which could be further investigated as immunotherapy targets. Conclusion: We generate a comprehensive resource of protein and peptide targets that covers multiple therapeutic modalities. This unique resource will pave the way for repurposing of currently available drugs and developing new drugs for cancer treatment. Citation Format: Jonathan T. Lei, Sara R. Savage, Xinpei Yi, Bo Wen, Hongwei Zhao, Lauren K. Somes, Paul W. Shafer, Yongchao Dou, Qiang Gao, Valentina Hoyos, Bing Zhang. Pan-cancer proteogenomics expands the landscape of therapeutic targets. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5726.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得150
刚刚
你才是小哭包完成签到 ,获得积分10
2秒前
科研通AI5应助1437594843采纳,获得10
2秒前
2秒前
wnll发布了新的文献求助10
2秒前
孤独手机完成签到 ,获得积分10
2秒前
zhang完成签到 ,获得积分10
2秒前
傅凡桃完成签到,获得积分10
3秒前
江十三完成签到,获得积分10
5秒前
yp完成签到,获得积分10
5秒前
nannan完成签到 ,获得积分10
5秒前
完美世界应助傅凡桃采纳,获得10
6秒前
阳光的易真完成签到,获得积分10
7秒前
韭黄发布了新的文献求助10
7秒前
qin完成签到,获得积分10
7秒前
丹青完成签到,获得积分10
7秒前
xu完成签到,获得积分10
8秒前
echo完成签到 ,获得积分10
9秒前
lling完成签到 ,获得积分10
10秒前
风中悟空完成签到 ,获得积分10
11秒前
江酱完成签到,获得积分10
11秒前
淇奥完成签到 ,获得积分10
11秒前
11秒前
大卫戴完成签到 ,获得积分10
13秒前
执着幻桃完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
斯奈克完成签到,获得积分10
14秒前
Jasper应助韭黄采纳,获得10
14秒前
韩寒完成签到 ,获得积分10
15秒前
Xuz完成签到 ,获得积分10
15秒前
Hua完成签到,获得积分10
16秒前
鳗鱼不尤完成签到,获得积分10
17秒前
六沉完成签到 ,获得积分10
17秒前
柯柯完成签到,获得积分10
18秒前
张张留下了新的社区评论
18秒前
mysilicon完成签到,获得积分10
18秒前
贪玩丸子完成签到 ,获得积分10
19秒前
光亮语梦完成签到 ,获得积分10
19秒前
Fiona完成签到 ,获得积分10
20秒前
lsl完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430