亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 5726: Pan-cancer proteogenomics expands the landscape of therapeutic targets

可药性 蛋白质基因组学 生物 癌症 蛋白质组学 计算生物学 磷酸蛋白质组学 效应器 UniProt公司 靶向治疗 药物发现 癌症研究 生物信息学 基因组学 激酶 蛋白激酶A 遗传学 蛋白质磷酸化 基因 基因组 免疫学
作者
Jonathan T. Lei,Sara R. Savage,Xinpei Yi,Bin Wen,Hongwei Zhao,Lauren K. Somes,Paul Shafer,Yongchao Dou,Qiang Gao,Valentina Hoyos,Bing Zhang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5726-5726
标识
DOI:10.1158/1538-7445.am2023-5726
摘要

Abstract Background: Molecularly targeted therapies are critical for improving cancer treatment. Since proteins are the targets of these therapies and functional effectors of genomic aberrations, proteogenomics data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) provides an unprecedented opportunity to characterize existing and future therapeutic targets for cancer treatment. Approach: CPTAC proteogenomics data from >1000 cancer patients spanning 10 cancer types was used to evaluate current and potential therapeutic targets curated from four databases. Cell line data from DepMap was further integrated to distinguish causations from associations. Computational pipelines were deployed to identify synthetic lethality for targeting tumor suppressor loss and to prioritize tumor associated antigens as immunotherapy targets. Results: We systematically collected 3050 druggable proteins and classified them into 5 tiers to facilitate different applications such as companion diagnostics, drug repurposing, and new therapy development. Many druggable proteins showed poor mRNA-protein correlation, including secreted proteins and proteins whose abundance was correlated with their interaction partners instead of cognate mRNA, highlighting the necessity of direct proteomic quantification of drug targets. 618 druggable proteins showed both overexpression in tumors compared to normal and significant dependency in CRISPR-Cas9 screens of cell lines of the same lineage. Notably, PAK1, a kinase targeted by investigational drugs, demonstrated both overexpression and dependency in all cancer types. A similar analysis of phosphoproteomics data focusing on known activating sites of druggable proteins further revealed targetable dependencies driven by protein hyperactivation. The phosphosite pS50 on PTPN1, a phosphatase targeted by experimental drugs, was increased in 7 cancer types and PTPN1 demonstrated dependency in related cancer cell lines. Based on tumor proteogenomic data and cell line CRISPR-Cas9 screen data, we identified synthetic lethality for difficult to target tumor suppressor losses, revealing TP53 mutations as a candidate biomarker to select breast cancer patients for CHEK1 inhibition, and endometrial cancer patients for treatment with doxorubicin. We identified 140 proteins whose expression was restricted in normal tissues but abnormal in tumors. Experimental analysis of peptides predicted to have high binding affinity to the most common allotype HLA-A02 for 7 prioritized proteins identified 21 peptides from 5 proteins with both strong binding affinity and immunogenicity which could be further investigated as immunotherapy targets. Conclusion: We generate a comprehensive resource of protein and peptide targets that covers multiple therapeutic modalities. This unique resource will pave the way for repurposing of currently available drugs and developing new drugs for cancer treatment. Citation Format: Jonathan T. Lei, Sara R. Savage, Xinpei Yi, Bo Wen, Hongwei Zhao, Lauren K. Somes, Paul W. Shafer, Yongchao Dou, Qiang Gao, Valentina Hoyos, Bing Zhang. Pan-cancer proteogenomics expands the landscape of therapeutic targets. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5726.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hlq完成签到 ,获得积分10
14秒前
xuzb完成签到,获得积分10
40秒前
44秒前
龙龙冲发布了新的文献求助20
46秒前
美满尔蓝完成签到,获得积分10
48秒前
纪言七许完成签到 ,获得积分10
54秒前
小马甲应助龙龙冲采纳,获得10
59秒前
英勇的醉蓝完成签到,获得积分20
1分钟前
qinglongtsmc发布了新的文献求助10
1分钟前
ding应助英勇的醉蓝采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
inRe发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
SiboN发布了新的文献求助10
2分钟前
xuzb发布了新的文献求助10
2分钟前
qinglongtsmc完成签到,获得积分10
2分钟前
alanbike完成签到,获得积分10
3分钟前
十字水瓶关注了科研通微信公众号
3分钟前
搜集达人应助闪闪万言采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
null应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
王王碎冰冰完成签到,获得积分10
3分钟前
十字水瓶发布了新的文献求助10
3分钟前
我是老大应助王王碎冰冰采纳,获得10
3分钟前
花陵完成签到 ,获得积分10
3分钟前
ZanE完成签到,获得积分10
3分钟前
乞明完成签到 ,获得积分10
3分钟前
4分钟前
小马甲应助lin采纳,获得10
4分钟前
yishang发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628172
求助须知:如何正确求助?哪些是违规求助? 4715898
关于积分的说明 14963806
捐赠科研通 4785879
什么是DOI,文献DOI怎么找? 2555413
邀请新用户注册赠送积分活动 1516720
关于科研通互助平台的介绍 1477252