Abstract 5726: Pan-cancer proteogenomics expands the landscape of therapeutic targets

可药性 蛋白质基因组学 生物 癌症 蛋白质组学 计算生物学 磷酸蛋白质组学 效应器 UniProt公司 靶向治疗 药物发现 癌症研究 生物信息学 基因组学 激酶 蛋白激酶A 遗传学 蛋白质磷酸化 基因 基因组 免疫学
作者
Jonathan T. Lei,Sara R. Savage,Xinpei Yi,Bin Wen,Hongwei Zhao,Lauren K. Somes,Paul Shafer,Yongchao Dou,Qiang Gao,Valentina Hoyos,Bing Zhang
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5726-5726
标识
DOI:10.1158/1538-7445.am2023-5726
摘要

Abstract Background: Molecularly targeted therapies are critical for improving cancer treatment. Since proteins are the targets of these therapies and functional effectors of genomic aberrations, proteogenomics data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) provides an unprecedented opportunity to characterize existing and future therapeutic targets for cancer treatment. Approach: CPTAC proteogenomics data from >1000 cancer patients spanning 10 cancer types was used to evaluate current and potential therapeutic targets curated from four databases. Cell line data from DepMap was further integrated to distinguish causations from associations. Computational pipelines were deployed to identify synthetic lethality for targeting tumor suppressor loss and to prioritize tumor associated antigens as immunotherapy targets. Results: We systematically collected 3050 druggable proteins and classified them into 5 tiers to facilitate different applications such as companion diagnostics, drug repurposing, and new therapy development. Many druggable proteins showed poor mRNA-protein correlation, including secreted proteins and proteins whose abundance was correlated with their interaction partners instead of cognate mRNA, highlighting the necessity of direct proteomic quantification of drug targets. 618 druggable proteins showed both overexpression in tumors compared to normal and significant dependency in CRISPR-Cas9 screens of cell lines of the same lineage. Notably, PAK1, a kinase targeted by investigational drugs, demonstrated both overexpression and dependency in all cancer types. A similar analysis of phosphoproteomics data focusing on known activating sites of druggable proteins further revealed targetable dependencies driven by protein hyperactivation. The phosphosite pS50 on PTPN1, a phosphatase targeted by experimental drugs, was increased in 7 cancer types and PTPN1 demonstrated dependency in related cancer cell lines. Based on tumor proteogenomic data and cell line CRISPR-Cas9 screen data, we identified synthetic lethality for difficult to target tumor suppressor losses, revealing TP53 mutations as a candidate biomarker to select breast cancer patients for CHEK1 inhibition, and endometrial cancer patients for treatment with doxorubicin. We identified 140 proteins whose expression was restricted in normal tissues but abnormal in tumors. Experimental analysis of peptides predicted to have high binding affinity to the most common allotype HLA-A02 for 7 prioritized proteins identified 21 peptides from 5 proteins with both strong binding affinity and immunogenicity which could be further investigated as immunotherapy targets. Conclusion: We generate a comprehensive resource of protein and peptide targets that covers multiple therapeutic modalities. This unique resource will pave the way for repurposing of currently available drugs and developing new drugs for cancer treatment. Citation Format: Jonathan T. Lei, Sara R. Savage, Xinpei Yi, Bo Wen, Hongwei Zhao, Lauren K. Somes, Paul W. Shafer, Yongchao Dou, Qiang Gao, Valentina Hoyos, Bing Zhang. Pan-cancer proteogenomics expands the landscape of therapeutic targets. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5726.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Grayball应助平云采纳,获得10
1秒前
子车谷波完成签到,获得积分10
2秒前
2秒前
苏安泠完成签到 ,获得积分10
3秒前
3秒前
英勇的思天完成签到 ,获得积分10
4秒前
zzqx完成签到,获得积分10
6秒前
起司嗯完成签到,获得积分10
6秒前
开放鸵鸟完成签到,获得积分10
6秒前
徐徐发布了新的文献求助10
6秒前
ZZZ发布了新的文献求助10
7秒前
懵懂的子骞完成签到 ,获得积分10
8秒前
mammoth发布了新的文献求助40
8秒前
8秒前
英俊的铭应助Chang采纳,获得10
9秒前
9秒前
9秒前
kk子完成签到,获得积分10
10秒前
夏橪发布了新的文献求助10
10秒前
JamesPei应助lunan采纳,获得10
11秒前
传奇3应助qing采纳,获得10
11秒前
卫尔摩斯完成签到,获得积分10
12秒前
12秒前
12秒前
沉默牛排发布了新的文献求助10
12秒前
科研通AI5应助独特微笑采纳,获得10
12秒前
13秒前
13秒前
碧玉墨绿完成签到,获得积分10
13秒前
xiaoma完成签到,获得积分10
13秒前
14秒前
潇洒的擎苍完成签到,获得积分10
14秒前
刘晓纳发布了新的文献求助10
14秒前
晴子发布了新的文献求助10
14秒前
洛鸢发布了新的文献求助10
15秒前
立马毕业完成签到,获得积分10
15秒前
卫尔摩斯发布了新的文献求助10
15秒前
BINBIN完成签到 ,获得积分10
15秒前
hfgeyt完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762