A spatial lagged multivariate discrete grey model for forecasting an economy-energy-environment system

多元统计 北京 中国 能源消耗 人均 计量经济学 空间相关性 空间分析 温室气体 消费(社会学) 溢出效应 空间相关性 环境科学 地理 统计 经济 数学 工程类 人口学 生态学 人口 微观经济学 考古 社会学 电气工程 生物 社会科学
作者
Huiping Wang,Zhun Zhang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:404: 136922-136922 被引量:6
标识
DOI:10.1016/j.jclepro.2023.136922
摘要

To perform better future trend prediction for an economy-energy-environment (3E) system and address the shortcomings of traditional multivariate grey models, this paper introduces a spatial correlation term into the multivariate discrete grey model, thus creating the SLDGM(1,n) model, and improves the final calculation of the model according to the priority of new information. The validity of the SLDGM(1,n) model is assessed using data from the 3E system in North China, and the SLDGM(1,n) model is applied to predict the future trends of the 3E system in North China. The following conclusions are obtained. First, the introduction of the spatial correlation term and the improvement of the final calculation method are reasonable; the prediction accuracy of the multivariate grey model is improved, and multiple systems are modeled simultaneously. Second, the SLDGM(1,n) model calculates the spatial spillover effect, and according to the simulation results for North China from 2010 to 2019, Hebei's energy consumption and carbon emissions are subject to the largest influence from other provinces, while its economic development level is subject to the smallest influence, and the carbon emissions of Shanxi and Inner Mongolia are subject to a negative spatial influence effect. Third, the prediction results indicate that under the effect of spatial correlation, the energy consumption of all five provinces in North China will continue to rise; the carbon emissions of Beijing will gradually decline while the carbon emissions of the other four provinces will all gradually rise, and the per capita GDP of the five provinces is expected to increase by more than 50% by 2025.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYX完成签到,获得积分10
刚刚
慕青应助AJ采纳,获得10
刚刚
1秒前
Jia完成签到,获得积分10
2秒前
kagami应助dengdengdeng采纳,获得30
2秒前
田様应助LJD采纳,获得10
2秒前
脑洞疼应助飘逸秋荷采纳,获得10
2秒前
暴躁的纸飞机完成签到,获得积分10
2秒前
缥缈怀绿完成签到,获得积分10
2秒前
3秒前
3秒前
方向发布了新的文献求助10
4秒前
ZhijunXiang发布了新的文献求助10
5秒前
xumz完成签到,获得积分10
5秒前
斯文败类应助平常的无极采纳,获得10
5秒前
5秒前
5秒前
小憨兔cc完成签到,获得积分10
5秒前
11完成签到,获得积分10
6秒前
6秒前
xumz发布了新的文献求助30
9秒前
10秒前
李亚婷发布了新的文献求助10
10秒前
10秒前
小二郎应助小金鱼儿采纳,获得10
10秒前
852应助gs采纳,获得10
10秒前
汉堡包应助wind采纳,获得10
11秒前
擎天之柱发布了新的文献求助10
11秒前
彭希帆发布了新的文献求助10
12秒前
Laura567完成签到,获得积分10
13秒前
guosheng发布了新的文献求助10
14秒前
顺利的爆米花完成签到 ,获得积分10
14秒前
平淡山芙发布了新的文献求助10
14秒前
第一步催化B完成签到,获得积分10
14秒前
天天快乐应助KAJIKU采纳,获得10
15秒前
秋2完成签到 ,获得积分10
15秒前
15秒前
乐乐应助AJ采纳,获得10
17秒前
orixero应助段辉采纳,获得10
17秒前
欧文完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306