Cohort-driven variant burden analysis and pathogenicity identification in monogenic autoinflammatory disorders

生物 遗传学 致病性 等位基因 基因 表型 致病岛 基因组 计算生物学 微生物学
作者
Xiang Chen,Xiaomin Yu
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:152 (2): 517-527 被引量:2
标识
DOI:10.1016/j.jaci.2023.03.028
摘要

Nearly 50 pathogenic genes and hundreds of pathogenic variants have been identified in monogenic autoinflammatory diseases (AIDs). Nonetheless, there are still many genes for which the pathogenic mechanisms are poorly understood, and the pathogenicity of many candidate variants needs to be determined.Monogenic AIDs are a group of rare genetic diseases characterized by inflammation as the phenotype. With the development of next-generation sequencing, pathogenic genes have been widely reported and used for clinical screening and diagnosis. The International Society for Systemic Autoinflammatory Diseases has recognized approximately 50 pathogenic genes and hundreds of related pathogenic variants in monogenic AIDs. We plan to investigate these pathogenic variants by conducting a variant burden analysis to determine whether or not there are consistent characteristics.We performed a variant burden analysis on the Genome Aggregation Database cohort using the currently reported genetic variants in monogenic AIDs, analyzing the enrichment of allelic signatures and deleterious predictions at the variants. Allelic signatures were extracted from Genome Aggregation Database, and the deleterious predictions were extracted from existing tools. The features obtained from the variant burden analysis were applied to the Random Forest model to classify the pathogenicity of novel mutations.Functional enrichment and network analysis of AID pathogenic genes have hinted at the possible involvement of unsuspected signals. The variant burden analysis demonstrated that the pathogenicity of a variant could not be reliably classified using only its allele frequency and deleterious predictions. However, variants of varying classifications of pathogenicity exhibited strikingly different patterns of the allelic signature in the upstream and downstream regions surrounding the variants. Furthermore, the distribution of deleterious variants surrounding the variants in the cohort varied significantly across pathogenicity categories. Finally, the cohort-based features extracted from the alleles were applied to the prediction of pathogenicity in monogenic AIDs, achieving superior prediction performance compared with other tools. The cohort-based features have potential applications across a more extensive variety of disease categories.The pathogenicity of a variant can be effectively classified on the basis of variant frequency and deleterious prediction of the allele in the cohort, and this information can be used to improve the accuracy of the current classification of the pathogenicity of the variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李一一发布了新的文献求助10
刚刚
李李李er发布了新的文献求助10
刚刚
白开水发布了新的文献求助10
刚刚
淡然千山完成签到 ,获得积分10
1秒前
1秒前
在下小李发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
caoyy完成签到,获得积分10
2秒前
张志超发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI6应助小巧的蓝血采纳,获得10
3秒前
万能图书馆应助帆帆帆采纳,获得10
3秒前
奥利奥完成签到 ,获得积分10
3秒前
正直听白发布了新的文献求助10
3秒前
上官若男应助YDX采纳,获得10
4秒前
4秒前
zhang完成签到,获得积分10
4秒前
cocp发布了新的文献求助10
4秒前
小小威发布了新的文献求助10
4秒前
武小伟发布了新的文献求助10
4秒前
4秒前
秦英杰完成签到,获得积分20
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
张生娣完成签到,获得积分10
5秒前
hyx发布了新的文献求助10
5秒前
算命先生发布了新的文献求助10
5秒前
ilihe应助Jeffery426采纳,获得10
5秒前
科研通AI6应助Venom采纳,获得10
5秒前
饼饼发布了新的文献求助10
6秒前
JiangY发布了新的文献求助10
6秒前
赘婿应助Sucre采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
dong发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827