Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI

计算机科学 判别式 图形 人工智能 卷积神经网络 模式识别(心理学) 机器学习 理论计算机科学
作者
Jin Zhang,Xiaohai He,Linbo Qing,Xiang Chen,Luping Liu,Honggang Chen
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:270: 110546-110546 被引量:18
标识
DOI:10.1016/j.knosys.2023.110546
摘要

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
基金中中中完成签到,获得积分10
2秒前
2秒前
4秒前
华仔应助55555555采纳,获得10
4秒前
6秒前
7秒前
玖Nine发布了新的文献求助10
8秒前
酷波er应助guguoxian采纳,获得10
8秒前
WHaha发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
55555555完成签到,获得积分10
11秒前
Jasper应助晴小阳采纳,获得10
12秒前
jingsihan完成签到,获得积分10
12秒前
会撒娇的羿完成签到,获得积分10
12秒前
lilililith应助土又鸟采纳,获得10
13秒前
14秒前
15秒前
v小飞侠101发布了新的文献求助10
16秒前
游戏人间完成签到 ,获得积分10
17秒前
18秒前
22秒前
小李找文献完成签到,获得积分10
23秒前
23秒前
24秒前
minever白完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
波比冰苏打完成签到,获得积分10
27秒前
28秒前
华仔应助玖Nine采纳,获得10
30秒前
上官若男应助玖Nine采纳,获得10
30秒前
Good_小鬼发布了新的文献求助10
31秒前
慕青应助v小飞侠101采纳,获得10
34秒前
晴小阳完成签到,获得积分10
34秒前
沙拉完成签到,获得积分10
36秒前
37秒前
清秀寇完成签到,获得积分10
39秒前
ding应助鳗鱼文涛采纳,获得10
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167