Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI

计算机科学 判别式 图形 人工智能 卷积神经网络 模式识别(心理学) 机器学习 理论计算机科学
作者
Jin Zhang,Xiaohai He,Linbo Qing,Xiang Chen,Luping Liu,Honggang Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110546-110546 被引量:15
标识
DOI:10.1016/j.knosys.2023.110546
摘要

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿毛发布了新的文献求助10
2秒前
3秒前
情怀应助灵巧荆采纳,获得10
3秒前
Ll发布了新的文献求助10
3秒前
Peter发布了新的文献求助30
4秒前
4秒前
5秒前
科研韭菜发布了新的文献求助10
5秒前
科研通AI5应助爱学习采纳,获得10
5秒前
科研通AI5应助跳跃的太阳采纳,获得10
5秒前
苏尔琳诺完成签到,获得积分10
5秒前
科研通AI5应助a1oft采纳,获得10
6秒前
6秒前
关关过完成签到,获得积分10
6秒前
呢不辣完成签到,获得积分10
6秒前
6秒前
shi hui应助陈博士采纳,获得10
6秒前
6秒前
糖糖关注了科研通微信公众号
7秒前
7秒前
小恶于完成签到 ,获得积分10
7秒前
科研通AI2S应助落晨采纳,获得10
8秒前
8秒前
9秒前
半颗橙子发布了新的文献求助10
9秒前
小可爱完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
Jiangnj发布了新的文献求助30
11秒前
samantha完成签到,获得积分10
12秒前
12秒前
俎树同完成签到 ,获得积分10
12秒前
Natsu完成签到,获得积分10
12秒前
马保国123发布了新的文献求助10
13秒前
丘比特应助无限的隶采纳,获得10
13秒前
在云里爱与歌完成签到,获得积分10
14秒前
迟大猫应助研究生采纳,获得10
14秒前
可行完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762