Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI

计算机科学 判别式 图形 人工智能 卷积神经网络 模式识别(心理学) 机器学习 理论计算机科学
作者
Jin Zhang,Xiaohai He,Linbo Qing,Xiang Chen,Luping Liu,Honggang Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110546-110546 被引量:39
标识
DOI:10.1016/j.knosys.2023.110546
摘要

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助Kristal采纳,获得30
刚刚
dropofwater完成签到,获得积分10
刚刚
1秒前
科研通AI6.1应助jcx采纳,获得10
2秒前
WH发布了新的文献求助30
3秒前
哭泣青烟发布了新的文献求助10
3秒前
4秒前
橙子发布了新的文献求助10
4秒前
炸茄盒的老头完成签到,获得积分10
5秒前
5秒前
sssss完成签到 ,获得积分10
5秒前
毕业就行完成签到,获得积分10
5秒前
张培元发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
taiyan发布了新的文献求助10
11秒前
欢喜恶天发布了新的文献求助10
15秒前
万能图书馆应助1090采纳,获得10
15秒前
小马甲应助Zevin采纳,获得10
17秒前
17秒前
睡不醒的网完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
福尔摩云完成签到,获得积分10
18秒前
18秒前
1b完成签到,获得积分10
19秒前
lumingrui完成签到,获得积分10
20秒前
taiyan完成签到,获得积分10
21秒前
Kristal完成签到,获得积分10
22秒前
科研通AI6.1应助yuananw采纳,获得10
22秒前
lumingrui发布了新的文献求助10
24秒前
Kristal发布了新的文献求助30
25秒前
高级牛马完成签到 ,获得积分10
26秒前
wwwwww发布了新的文献求助10
27秒前
Criminology34应助橙子采纳,获得10
28秒前
28秒前
muyassar完成签到,获得积分10
30秒前
研友_8K24gZ完成签到,获得积分10
31秒前
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5814835
求助须知:如何正确求助?哪些是违规求助? 5920784
关于积分的说明 15541421
捐赠科研通 4937669
什么是DOI,文献DOI怎么找? 2659231
邀请新用户注册赠送积分活动 1605594
关于科研通互助平台的介绍 1560138