Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI

计算机科学 判别式 图形 人工智能 卷积神经网络 模式识别(心理学) 机器学习 理论计算机科学
作者
Jin Zhang,Xiaohai He,Linbo Qing,Xiang Chen,Luping Liu,Honggang Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:270: 110546-110546 被引量:15
标识
DOI:10.1016/j.knosys.2023.110546
摘要

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JamesPei应助可靠的春天采纳,获得10
2秒前
szw发布了新的文献求助10
2秒前
J0A0发布了新的文献求助30
4秒前
邺水朱华发布了新的文献求助10
6秒前
dai完成签到,获得积分10
7秒前
香蕉觅云应助菜小瓜采纳,获得10
7秒前
dai发布了新的文献求助10
9秒前
11秒前
Tobee发布了新的文献求助10
11秒前
zhzhzh发布了新的文献求助10
11秒前
邺水朱华完成签到,获得积分10
13秒前
桐桐应助自信以冬采纳,获得10
17秒前
20秒前
老司机只踩油门完成签到,获得积分10
21秒前
英姑应助美满的小熊猫采纳,获得10
21秒前
共享精神应助zixian采纳,获得10
22秒前
酷酷纸飞机完成签到,获得积分10
22秒前
资白玉完成签到 ,获得积分0
24秒前
和平使命应助chiyudoubao采纳,获得10
24秒前
cocolu应助落雨情绪采纳,获得10
24秒前
天真如松发布了新的文献求助10
25秒前
菜小瓜完成签到,获得积分10
25秒前
Lucas应助九肆采纳,获得10
26秒前
鱼鱼鱼完成签到 ,获得积分10
27秒前
27秒前
勤恳纸鹤完成签到,获得积分10
28秒前
28秒前
at发布了新的文献求助10
28秒前
Jack80应助冷酷紫南采纳,获得200
33秒前
调皮黑猫完成签到,获得积分10
33秒前
慕青应助天真如松采纳,获得10
34秒前
pl脆脆发布了新的文献求助10
34秒前
35秒前
cocolu应助ibigbird采纳,获得10
36秒前
37秒前
Tobee完成签到,获得积分10
38秒前
39秒前
39秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342877
求助须知:如何正确求助?哪些是违规求助? 2969981
关于积分的说明 8642146
捐赠科研通 2649916
什么是DOI,文献DOI怎么找? 1450994
科研通“疑难数据库(出版商)”最低求助积分说明 672032
邀请新用户注册赠送积分活动 661374