3D Brain Tumor Segmentation with U-Net Network using Public Kaggle Dataset

计算机科学 分割 人工智能 市场细分 深度学习 图像分割 模式识别(心理学) MATLAB语言 机器学习 营销 业务 操作系统
作者
S. Sujatha,T. Sreenivasulu Reddy
标识
DOI:10.1109/icais56108.2023.10073895
摘要

This paper aims to implement and experiment with a deep learning model, U-Net, for effectively segmenting the 3D-brain tumor images. It helps to identify glioblastoma in MRI brain images. Manual investigation of MRI images does not provide exact information about the abnormalities in the images. Thus, various existing methods have proposed medical image processing methods, which include custom methods, traditional image segmentation methods, and classifiers. However, those methods did not provide high accuracy in prediction with lesser complexity. Hence, this paper has aimed to implement U-Net architecture for segmenting and classifying MRI brain images. It helps in obtaining efficient performance regarding brain tumor segmentation, along with detailing the stage in which the diseased person currently has after segmentation. The proposed methodology has been experimented within MATLAB software, and the efficiency has been verified. From the experiment , it is identified that the proposed model provides better performance of 98% Accuracy, 95% Precision, and 96.4% Recall. Furthermore, the size of the tumor was successfully able to be intimated by outlining it, and the stage of the Brain Tumor (Gliomas) was also intimated with the warning message to any healthcare professional. Finally, the comparative study of existing methods using Morphological operations and our proposed 3D brain tumor segmentation methodology was made and presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的刺猬完成签到 ,获得积分10
刚刚
贪玩的谷芹完成签到 ,获得积分10
1秒前
布知道发布了新的文献求助10
2秒前
111完成签到,获得积分10
2秒前
3秒前
3秒前
苏打完成签到 ,获得积分10
4秒前
6秒前
小二郎应助lilililiy采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
斯文败类应助123采纳,获得20
9秒前
xiong发布了新的文献求助10
9秒前
9秒前
xxxp发布了新的文献求助10
10秒前
11秒前
rdd完成签到,获得积分20
11秒前
星夜发布了新的文献求助10
11秒前
sun完成签到 ,获得积分10
11秒前
田様应助云上人采纳,获得10
12秒前
谷子完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
星辰大海应助端庄威采纳,获得10
16秒前
赘婿应助魏一夫采纳,获得100
17秒前
风吟完成签到,获得积分10
17秒前
大模型应助小阎采纳,获得10
17秒前
北冥完成签到 ,获得积分10
18秒前
19秒前
等一等就是完成签到,获得积分10
20秒前
1021完成签到,获得积分10
20秒前
wanci应助开心的西瓜采纳,获得10
21秒前
Emper完成签到,获得积分10
21秒前
坚定从波发布了新的文献求助10
23秒前
24秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182