混乱的
参数统计
控制理论(社会学)
计算机科学
记忆电阻器
分叉
固定点
联轴节(管道)
赫农地图
理论(学习稳定性)
构造(python库)
控制器(灌溉)
耦合映象格
算法
数学
混沌同步
人工智能
非线性系统
控制(管理)
物理
工程类
电子工程
机器学习
统计
数学分析
生物
程序设计语言
机械工程
量子力学
农学
作者
Mengjiao Wang,Mingyu An,Xinan Zhang,Herbert Ho Ching Iu
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2023-11-01
卷期号:70 (11): 4251-4255
被引量:1
标识
DOI:10.1109/tcsii.2023.3293109
摘要
Discrete memristors can be coupled with one-dimensional (1D) chaotic maps to construct chaotic or hyperchaotic map models. However, the literature on coupling 1D maps with multiple memristors to construct three-dimensional (3D) or higher dimensional chaotic maps is very sparse. To this end, this brief proposes a new framework to construct a 3D hyperchaotic map model by coupling two different memristors with 1D maps through a parametric feedback control approach. The stability analysis of fixed point shows that the stability of 3D chaotic map depends on the initial state of two different model memristors and the parameters of the chaotic map. The control parameter-dependent hyperchaotic behavior and the initial state-dependent boosting bifurcation behavior are revealed using numerical simulations. Meanwhile, the feedback parameters of the chaotic map can modulate the dynamical behavior of the chaotic map. In addition, experimental results obtained from a micro-controller based platform are presented to verify the validity of the proposed design.
科研通智能强力驱动
Strongly Powered by AbleSci AI