Recovering 3D Human Mesh From Monocular Images: A Survey

计算机科学 计算机视觉 单眼 人工智能 模式识别(心理学) 计算机图形学(图像)
作者
Yating Tian,Hongwen Zhang,Yebin Liu,Limin Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (12): 15406-15425 被引量:87
标识
DOI:10.1109/tpami.2023.3298850
摘要

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey that focuses on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的菲鹰完成签到 ,获得积分10
2秒前
deer完成签到,获得积分10
4秒前
hhhh发布了新的文献求助200
4秒前
4秒前
7秒前
8秒前
平淡发布了新的文献求助10
8秒前
Solitude发布了新的文献求助20
9秒前
fatali发布了新的文献求助10
10秒前
腼腆的傲薇完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
13秒前
15秒前
lyz发布了新的文献求助10
17秒前
海棠微雨发布了新的文献求助10
17秒前
骆子军发布了新的文献求助10
17秒前
18秒前
SAINT完成签到,获得积分10
19秒前
儒雅香彤完成签到 ,获得积分10
19秒前
he0570完成签到 ,获得积分10
19秒前
benhzh发布了新的文献求助10
21秒前
纪智勇发布了新的文献求助10
21秒前
一一完成签到 ,获得积分10
22秒前
22秒前
姜淮完成签到 ,获得积分10
23秒前
冬瓜发布了新的文献求助10
24秒前
橙橙妈妈发布了新的文献求助10
26秒前
Eve完成签到,获得积分20
26秒前
hajy发布了新的文献求助10
27秒前
wfrg发布了新的文献求助10
27秒前
NexusExplorer应助科研小白采纳,获得10
29秒前
kingwill应助Solitude采纳,获得20
29秒前
整齐乌完成签到 ,获得积分10
29秒前
爆米花应助王王王采纳,获得10
30秒前
海棠微雨完成签到,获得积分10
31秒前
请我吃葡萄给请我吃葡萄的求助进行了留言
31秒前
32秒前
lyz关注了科研通微信公众号
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3757690
求助须知:如何正确求助?哪些是违规求助? 3300800
关于积分的说明 10115341
捐赠科研通 3015321
什么是DOI,文献DOI怎么找? 1655953
邀请新用户注册赠送积分活动 790178
科研通“疑难数据库(出版商)”最低求助积分说明 753621