Machine Learning Prediction of High-Yield Cobalt- and Nickel-Catalyzed Borylations

催化作用 产量(工程) 吞吐量 随机森林 化学 计算机科学 生物系统 特征选择 工艺工程 机器学习 材料科学 有机化学 工程类 冶金 电信 无线 生物
作者
Alfredo Pereira,Oleksandra S. Trofymchuk
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (27): 12983-12994 被引量:3
标识
DOI:10.1021/acs.jpcc.3c01704
摘要

Borylation reactions catalyzed by cobalt and nickel compounds occupy their important niche in synthetic organic chemistry; however, the search of parameters for high-yield reactions can be time-consuming and expensive. Recently, machine learning-based regression models were able to accurately predict reactivity yields, still when data from the literature are used, less accurate models are obtained. In this work, transforming the regression problem into a classification problem, we managed to predict high-yield cobalt- and nickel-catalyzed borylations using reaction data taken from the literature. With the Random Forest algorithm, we achieve to get the area under the receiver operating characteristics (ROC) curve mean values of 0.93 for cobalt-catalyzed reaction models and 0.86 for nickel-catalyzed reaction models. In addition, the feature importance indicates that for Co-catalyzed reactions, the characteristics of the catalyst are the most important, while in Ni-catalyzed borylations, there is a greater influence of the characteristics of the reactants and products. We think that this study may be a viable alternative to take advantage of reported reactions and could be especially useful for those laboratories that do not have the possibility to perform high-throughput experimentation to optimize their catalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zk001完成签到,获得积分10
1秒前
ada发布了新的文献求助10
2秒前
bkagyin应助zy3637采纳,获得10
3秒前
Kurt发布了新的文献求助10
3秒前
瘦瘦的颜完成签到,获得积分10
3秒前
月月完成签到,获得积分10
3秒前
wanci应助白白采纳,获得10
5秒前
小马甲应助adds采纳,获得10
6秒前
自信不愁完成签到,获得积分10
6秒前
Vincentliu完成签到 ,获得积分10
7秒前
Li猪猪完成签到,获得积分10
7秒前
TsuKe完成签到,获得积分10
8秒前
8秒前
zy3637完成签到,获得积分10
9秒前
qingli完成签到,获得积分10
11秒前
坂田银时完成签到,获得积分10
11秒前
13秒前
充电宝应助碧蓝的安筠采纳,获得10
13秒前
KAKIN应助机智的无心采纳,获得10
14秒前
任性的鼠标完成签到,获得积分10
15秒前
lalal完成签到,获得积分10
15秒前
ada完成签到,获得积分20
15秒前
16秒前
你好发布了新的文献求助10
17秒前
美国giao哥完成签到,获得积分10
17秒前
Yogita完成签到,获得积分0
17秒前
顾矜应助电闪采纳,获得10
18秒前
我爱学习完成签到,获得积分10
19秒前
20秒前
22秒前
22秒前
23秒前
Ava应助望仔采纳,获得10
23秒前
Hello应助更远的天空采纳,获得10
23秒前
大模型应助苗条的谷秋采纳,获得10
23秒前
万能图书馆应助善良友安采纳,获得10
24秒前
24秒前
24秒前
123发布了新的文献求助10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961131
求助须知:如何正确求助?哪些是违规求助? 3507413
关于积分的说明 11135967
捐赠科研通 3239888
什么是DOI,文献DOI怎么找? 1790452
邀请新用户注册赠送积分活动 872420
科研通“疑难数据库(出版商)”最低求助积分说明 803152