Design of Low-Stress robust silicon and Silicon-Carbide anode with high areal capacity and high energy density for Next-Generation Lithium-Ion batteries

阳极 材料科学 X射线光电子能谱 阴极 锂(药物) 化学工程 碳化硅 复合材料 纳米技术 光电子学 电极 电气工程 化学 医学 物理化学 工程类 内分泌学
作者
Manoj Gautam,Govind Kumar Mishra,Mohammad Furquan,K. Bhawana,Dhruv Kumar,Sagar Mitra
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:472: 144916-144916 被引量:22
标识
DOI:10.1016/j.cej.2023.144916
摘要

Utilization of biomass-converted products in the energy industry is a pathway to sustain the demand of high energy lithium cells, and silicon anode could be a solution before the lithium metal. The high percentage of silicon (>10 wt%) in the anode for capacity gain can’t prevent crack generation during cycling and results in capacity fading and cell failure. Here, we present a unique anode structure like an in-situ nano-layer of carbon-coated silicon–silicon carbide (Si-SiC@C) from black rice husk ash (BRHA)-biomass. A specific proportion of the “SiC” phase in Si-SiC@C plays a crucial role in the formation of a stable interface, passivation of the Si surface, and suppression of Si cracking, resulting in improved battery cycling performance. Furthermore, the distribution of relaxation times (DRT) experiment was carried out in MATLAB software to more understand the interface mechanism. Nano-indentation and Von-mises stress generation method was used to analyze the mechanical properties of samples. The ‘Si’ and ‘SiC’ phases were distinguished by X-ray Diffraction (XRD) and are thoroughly analyzed via the advanced characterization tools (i.e., FETEM, c-AFM, XPS, etc.). The optimized Si-SiC@C composition showed excellent cyclic stability up to 700 cycles with an areal capacity of ∼2.3 mAh cm−2 at a rate of 0.2 A g−1 vs. Li/Li+. Moreover, a pouch cell is fabricated with the Si-SiC@C (i.e., ∼3.8 mg cm−2) as anode and NMC811 as cathode (∼11.5 mg cm−2). The developed 300 mAh pouch cell performed excellently (>85 % capacity retention) over 200 cycles. In light of easy and energy-efficient synthesis, robustness, and cyclic stability, the specially designed Si-SiC@C from BRHA can be a promising choice as the next-generation anode material for rechargeable battery applications, particularly for lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DDD完成签到,获得积分10
1秒前
1秒前
思源发布了新的文献求助10
1秒前
Rahul完成签到,获得积分0
2秒前
董绮敏发布了新的文献求助10
2秒前
2秒前
hahajiang完成签到,获得积分10
3秒前
gett发布了新的文献求助50
3秒前
LiZhenhua完成签到,获得积分10
3秒前
杨羕发布了新的文献求助10
3秒前
淡定鞋垫发布了新的文献求助10
3秒前
瘦瘦绮完成签到 ,获得积分10
3秒前
wzg完成签到,获得积分10
3秒前
科研小王发布了新的文献求助20
4秒前
田様应助善良的新之采纳,获得10
4秒前
xiaolingc完成签到,获得积分10
4秒前
susu完成签到,获得积分10
4秒前
wei发布了新的文献求助10
5秒前
Mister.WangK发布了新的文献求助10
6秒前
活泼翠绿完成签到,获得积分10
6秒前
liyang999发布了新的文献求助10
6秒前
7秒前
橘子的哈哈怪完成签到,获得积分10
7秒前
8秒前
CipherSage应助qiangxu采纳,获得30
8秒前
8秒前
10秒前
HY完成签到,获得积分10
10秒前
lwroche完成签到,获得积分10
10秒前
GeZhang完成签到,获得积分10
10秒前
10秒前
11秒前
yy发布了新的文献求助10
11秒前
12秒前
汉堡包应助yumb采纳,获得10
12秒前
12秒前
研友_nVNBVn发布了新的文献求助10
12秒前
畅快箴发布了新的文献求助10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756235
求助须知:如何正确求助?哪些是违规求助? 3299479
关于积分的说明 10110271
捐赠科研通 3013987
什么是DOI,文献DOI怎么找? 1655375
邀请新用户注册赠送积分活动 789739
科研通“疑难数据库(出版商)”最低求助积分说明 753429