Beyond Orowan hardening: Mapping the four distinct mechanisms associated with dislocation-precipitate interaction

材料科学 成核 位错 硬化(计算) 位错蠕变 降水 沉淀硬化 压力(语言学) 应变硬化指数 部分位错 纳米尺度 结晶学 复合材料 冶金 凝聚态物理 纳米技术 合金 热力学 图层(电子) 物理 语言学 哲学 化学 气象学
作者
Shenyou Peng,Zhili Wang,Jia Li,Qihong Fang,Yujie Wei
出处
期刊:International Journal of Plasticity [Elsevier BV]
卷期号:169: 103710-103710 被引量:44
标识
DOI:10.1016/j.ijplas.2023.103710
摘要

The conventional role played by precipitates in crystalline solids is in blocking the motion of dislocations and for consequentially hardening, a mechanism attributed to Orowan's finding. Recent experiments and theoretical analysis demonstrated that a few nanometre-sized precipitates, when dispersed in advanced metals at fine spacing, can further boost their strength at no sacrifice in ductility. In this paper, we construct the deformation map of four distinct mechanisms associated with dislocation-precipitate interaction: at low-to-intermediate stress level, dislocations may loop around a precipitate or cut-through it. In both scenarios the precipitates harden the materials and there is no net gaining of dislocations. At high stress level, nanoscale precipitates may in contrast act as dislocation sources and generate dislocations from the matrix-precipitate interface — an interface-nucleation process; or emit dislocations when highly stressed dislocations transverse them — a radiation-emission process. While the interface-nucleation mechanism could supply sustainable dislocation multiplication, the radiation-emission leads to the multiplication of two additional dislocations. Based on large-scale simulations and theoretical analysis, we construct a deformation map on dislocation-precipitate interaction in terms of stress and precipitate size. The revealed mechanisms and the dislocation-precipitate interaction map pave the way for strength–ductility optimization in materials through precipitation engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
清爽的代双完成签到,获得积分10
1秒前
SciGPT应助liang采纳,获得30
1秒前
彩色白卉完成签到,获得积分10
1秒前
千里发布了新的文献求助10
1秒前
levy发布了新的文献求助10
1秒前
三颜寻雪完成签到,获得积分10
2秒前
闪闪的河马完成签到,获得积分10
3秒前
开卷的芋圆完成签到 ,获得积分10
4秒前
呜啦啦发布了新的文献求助10
4秒前
4秒前
tsm完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
完美世界应助开朗雪卉采纳,获得10
6秒前
CipherSage应助无糖气泡水采纳,获得10
6秒前
Lucas应助诸葛烤鸭采纳,获得10
6秒前
6秒前
NINI完成签到,获得积分20
6秒前
Yamila完成签到,获得积分10
6秒前
Jiang完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
ppy完成签到 ,获得积分10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
NexusExplorer应助LFY采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
小杨同学应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
十yu完成签到,获得积分10
10秒前
元昭诩应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得50
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771