Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 植物 量子力学 天文 数据库 生物
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Nature]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxx完成签到,获得积分10
刚刚
毒蝎King应助盐好甜采纳,获得20
1秒前
弈迩栅完成签到 ,获得积分10
2秒前
一路狂奔等不了完成签到 ,获得积分10
3秒前
Eyrie2001完成签到,获得积分10
3秒前
繁荣的映雁完成签到,获得积分10
3秒前
4秒前
炙热觅松发布了新的文献求助20
4秒前
5秒前
赋成完成签到,获得积分10
6秒前
传奇3应助受伤翠容采纳,获得10
7秒前
研友_8Wq6Mn完成签到 ,获得积分10
7秒前
ws_WS_完成签到 ,获得积分10
7秒前
SQL完成签到 ,获得积分10
7秒前
情怀应助研友_842M4n采纳,获得10
8秒前
Durden7完成签到,获得积分10
8秒前
loin完成签到,获得积分10
8秒前
physicalproblem完成签到,获得积分10
8秒前
MKing完成签到,获得积分10
9秒前
CHEM_XIE完成签到,获得积分10
9秒前
10秒前
10秒前
聪慧青曼完成签到 ,获得积分10
11秒前
CodeCraft应助王文帝采纳,获得10
11秒前
隐形的大有完成签到,获得积分10
11秒前
小二郎应助炙热觅松采纳,获得10
12秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
羊羊完成签到,获得积分10
14秒前
lvxh应助科研通管家采纳,获得60
14秒前
英姑应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得10
14秒前
震震应助科研通管家采纳,获得20
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085527
求助须知:如何正确求助?哪些是违规求助? 2738431
关于积分的说明 7549700
捐赠科研通 2388188
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591