Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 生物 数据库 量子力学 植物 天文
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Science+Business Media]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
lm发布了新的文献求助10
3秒前
3秒前
3秒前
zhao完成签到,获得积分10
3秒前
weiwei完成签到,获得积分10
3秒前
科研通AI2S应助姜凯采纳,获得10
4秒前
孙福禄应助西西采纳,获得10
5秒前
孙福禄应助西西采纳,获得10
5秒前
5秒前
单纯青槐发布了新的文献求助10
5秒前
5秒前
5秒前
luckbaby完成签到,获得积分10
6秒前
方赫然发布了新的文献求助10
6秒前
JerryZ发布了新的文献求助10
6秒前
今后应助高贵绿真采纳,获得10
6秒前
Ava应助mariawang采纳,获得10
6秒前
6秒前
菜不透发布了新的文献求助10
7秒前
7秒前
纸猫发布了新的文献求助10
7秒前
8秒前
weiwei发布了新的文献求助10
8秒前
poli发布了新的文献求助10
9秒前
诚心尔琴发布了新的文献求助10
10秒前
10秒前
fgh完成签到,获得积分20
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
CAOHOU应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021