Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 植物 量子力学 天文 数据库 生物
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Nature]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
流云发布了新的文献求助10
1秒前
Heinrich完成签到,获得积分10
1秒前
大观天下发布了新的文献求助10
2秒前
ming完成签到 ,获得积分10
2秒前
桐桐应助高斯采纳,获得10
2秒前
912小霸王发布了新的文献求助10
2秒前
呢呢完成签到,获得积分10
2秒前
焦爽发布了新的文献求助10
2秒前
艾路完成签到,获得积分10
2秒前
无极微光应助朴素雨雪采纳,获得20
2秒前
清脆雪巧完成签到,获得积分10
2秒前
Orange应助H星科23456采纳,获得30
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
番茄杀手完成签到 ,获得积分10
4秒前
4秒前
科研通AI2S应助susu采纳,获得10
4秒前
Mic关闭了Mic文献求助
5秒前
5秒前
SQ发布了新的文献求助10
5秒前
Ava应助十九采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
QAQfxxz应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
坚定天与发布了新的文献求助10
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
JamesPei应助尺素寸心采纳,获得10
6秒前
www发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
久念完成签到,获得积分10
6秒前
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603