Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 植物 量子力学 天文 数据库 生物
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Nature]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助婷婷采纳,获得10
2秒前
哦豁拐咯完成签到,获得积分10
3秒前
3秒前
小智0921完成签到,获得积分10
3秒前
anan应助xiaohu采纳,获得20
4秒前
4秒前
老纪1999完成签到,获得积分10
4秒前
XIA发布了新的文献求助10
4秒前
彤彤发布了新的文献求助10
5秒前
静1997完成签到,获得积分20
5秒前
小马甲应助贪玩的寄松采纳,获得10
6秒前
核桃酥发布了新的文献求助10
7秒前
7秒前
静1997发布了新的文献求助10
9秒前
春风十里完成签到,获得积分10
9秒前
科目三应助scifff采纳,获得10
11秒前
11秒前
ce发布了新的文献求助10
12秒前
XIA完成签到,获得积分10
12秒前
15秒前
fred完成签到,获得积分20
15秒前
共享精神应助期颐七采纳,获得10
15秒前
科研通AI6应助2_3_10采纳,获得10
17秒前
灿烂千阳完成签到,获得积分10
17秒前
19秒前
aliderichang完成签到 ,获得积分10
19秒前
fred发布了新的文献求助30
19秒前
20秒前
20秒前
安医清嘉完成签到,获得积分10
20秒前
彭于晏应助jun采纳,获得10
20秒前
22秒前
传奇3应助伯赏聪展采纳,获得10
24秒前
打打应助zzzshy采纳,获得10
24秒前
天天快乐应助无足鸟采纳,获得10
24秒前
山与发布了新的文献求助10
26秒前
26秒前
song发布了新的文献求助30
29秒前
共享精神应助张同学采纳,获得10
32秒前
受伤小虾米完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818