重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 植物 量子力学 天文 数据库 生物
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Nature]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助ssss采纳,获得10
刚刚
刚刚
赵文丽发布了新的文献求助10
1秒前
科研通AI6应助1649639951qq采纳,获得20
1秒前
1秒前
2秒前
混吃等死完成签到,获得积分10
2秒前
2秒前
搬砖王完成签到,获得积分10
4秒前
4秒前
li发布了新的文献求助10
5秒前
5秒前
冷静水蓝发布了新的文献求助10
6秒前
6秒前
iwsaml发布了新的文献求助10
6秒前
7秒前
慕青应助牛爷爷采纳,获得10
7秒前
时尚立轩发布了新的文献求助20
7秒前
Sandy发布了新的文献求助10
8秒前
8秒前
FashionBoy应助网友依旧采纳,获得10
8秒前
clientprogram发布了新的文献求助30
8秒前
win发布了新的文献求助10
9秒前
隐形曼青应助禤X采纳,获得10
9秒前
学渣小林完成签到,获得积分20
9秒前
研友_8yPeXZ发布了新的文献求助200
9秒前
ding应助bigshan采纳,获得10
10秒前
追寻的怜容完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
cong完成签到,获得积分10
10秒前
11秒前
蚊蚊爱读书应助木头人采纳,获得20
11秒前
DiaoZihao发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助智障猫采纳,获得10
12秒前
赵文丽完成签到,获得积分10
12秒前
12秒前
听风说发布了新的文献求助10
12秒前
浮游应助刘祥采纳,获得10
12秒前
清辰子丶完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516