Bidirectional dynamic neural networks with physical analyzability

物理系统 计算机科学 人工神经网络 弹道 系统动力学 系统标识 鉴定(生物学) 人工智能 深度学习 机器人 惯性 算法 控制理论(社会学) 控制(管理) 物理 数据建模 经典力学 生物 数据库 量子力学 植物 天文
作者
Changjun Li,Fei Zhao,Xuguang Lan,Zhiqiang Tian,Tao Tao,Xuesong Mei
出处
期刊:Nonlinear Dynamics [Springer Science+Business Media]
卷期号:111 (17): 16309-16324
标识
DOI:10.1007/s11071-023-08672-8
摘要

The rapid growth in research exploiting deep learning to predict mechanical systems has revealed a new route for system identification; however, the analytic model as a white box has not been replaced in applications because of its open physical information. In contrast, the models generated by end-to-end learning usually lack the ability of physical analysis, which makes them inapplicable in many situations. Consequently, high-accuracy modeling with physical analyzability becomes a necessity. In this paper, we introduce bidirectional dynamic neural networks, a deep learning framework that can infer the dynamics of physical systems from control signals and observed state trajectories. Based on forward dynamics, we train the neural ordinary differential equations in a trajectory backtracking algorithm. With the trained model, the inverse dynamics can be calculated and based on $$\textit{Lagrangian}$$ $$\textit{Mechanics}$$ , the physical parameters of the mechanical system can be estimated, including inertia, Coriolis and centrifugal forces, and gravity. As a result, the model can seamlessly incorporate prior knowledge, learn unknown dynamics without human intervention, and provide information as transparent as analytic models. We demonstrate our method on simulated 2-axis and 6-axis robots to evaluate model accuracy, including physical parameters and verified its applicability on real 7-axis robots. The experimental results show that this method is superior to the existing methods. This framework provides a new idea for system identification by providing interpretable, physically consistent models for physical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
CJlamant发布了新的文献求助10
4秒前
Catalina_S应助suiyi2024采纳,获得20
5秒前
5秒前
5秒前
稳重飞飞完成签到,获得积分10
6秒前
高兴的紫文完成签到,获得积分10
6秒前
冷傲奇异果完成签到 ,获得积分10
6秒前
9秒前
盗糖小鸭发布了新的文献求助10
9秒前
瑾笙完成签到,获得积分10
10秒前
852应助YZ采纳,获得10
10秒前
自然的夏兰完成签到 ,获得积分10
11秒前
乐观含巧发布了新的文献求助10
11秒前
11秒前
12秒前
Hello应助hqq采纳,获得10
14秒前
科研通AI6应助keyan采纳,获得10
15秒前
Gengli发布了新的文献求助10
15秒前
英勇冰蓝发布了新的文献求助10
17秒前
还是你天天完成签到 ,获得积分10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
丹丹完成签到 ,获得积分10
21秒前
乐观含巧完成签到,获得积分20
22秒前
24秒前
25秒前
春夏秋冬发布了新的文献求助10
25秒前
甜蜜鹭洋完成签到 ,获得积分10
27秒前
善良的静柏关注了科研通微信公众号
27秒前
快乐听南完成签到,获得积分10
28秒前
枯荣完成签到 ,获得积分10
28秒前
Jiali发布了新的文献求助10
29秒前
30秒前
俊逸千山发布了新的文献求助10
30秒前
英勇冰蓝完成签到 ,获得积分10
31秒前
Pannn完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574159
求助须知:如何正确求助?哪些是违规求助? 3994206
关于积分的说明 12364971
捐赠科研通 3667420
什么是DOI,文献DOI怎么找? 2021241
邀请新用户注册赠送积分活动 1055370
科研通“疑难数据库(出版商)”最低求助积分说明 942774