FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 人工神经网络 深度学习 数据挖掘 计算机安全 国际贸易 业务
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:17
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models "forget" what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today's efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猫好好完成签到,获得积分10
刚刚
鲤鱼夜玉发布了新的文献求助10
1秒前
青青草发布了新的文献求助10
1秒前
1秒前
N_wh完成签到,获得积分10
1秒前
默默诗筠完成签到,获得积分10
1秒前
2秒前
不加糖发布了新的文献求助10
2秒前
大个应助温柔体贴阿尔法采纳,获得10
2秒前
Kenzonvay完成签到,获得积分10
2秒前
小明明完成签到 ,获得积分10
2秒前
ww_wty发布了新的文献求助10
3秒前
崔哈哈发布了新的文献求助10
3秒前
yxy完成签到,获得积分10
3秒前
地平完成签到,获得积分10
3秒前
916应助MrPao采纳,获得10
4秒前
Rocc完成签到,获得积分10
5秒前
动人的怀柔完成签到,获得积分10
6秒前
6秒前
宇心完成签到,获得积分10
6秒前
杳鸢应助mini采纳,获得10
6秒前
zhongu应助mini采纳,获得10
6秒前
刘仁轨发布了新的文献求助10
6秒前
小苏打完成签到,获得积分10
6秒前
园田真理完成签到,获得积分10
6秒前
6秒前
白瑜绕望舒完成签到,获得积分10
7秒前
yzx发布了新的文献求助10
7秒前
马哥二弟无敌完成签到 ,获得积分10
7秒前
星辰大海应助Yolo采纳,获得10
7秒前
7秒前
山止川行完成签到,获得积分10
8秒前
爆米花应助xiaowuyao采纳,获得10
8秒前
yk完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904