已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 数据挖掘 计算机安全 国际贸易 业务
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:3
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models “forget” what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today’s efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
momo完成签到 ,获得积分10
1秒前
自然芯完成签到 ,获得积分10
3秒前
singlestrand完成签到,获得积分10
3秒前
小嘴巴完成签到,获得积分10
3秒前
独特伟泽发布了新的文献求助20
3秒前
花花完成签到,获得积分20
4秒前
伟航完成签到,获得积分10
4秒前
花花发布了新的文献求助10
7秒前
8秒前
自信萃完成签到 ,获得积分10
14秒前
沉小墨发布了新的文献求助10
18秒前
21秒前
赘婿应助1场久下未停的雨采纳,获得10
21秒前
22秒前
传奇3应助谦让友绿采纳,获得10
23秒前
勤劳钧发布了新的文献求助10
23秒前
小欧完成签到,获得积分10
23秒前
24秒前
岸在海的深处完成签到 ,获得积分10
25秒前
CipherSage应助Zxc采纳,获得10
25秒前
coinc发布了新的文献求助10
26秒前
rain123发布了新的文献求助10
27秒前
翻译度完成签到,获得积分10
28秒前
Kaiser发布了新的文献求助10
29秒前
31秒前
32秒前
32秒前
33秒前
小蘑菇应助小饶采纳,获得10
34秒前
36秒前
36秒前
37秒前
38秒前
42秒前
43秒前
44秒前
颜南风完成签到 ,获得积分10
46秒前
水晶鞋完成签到 ,获得积分10
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229557
求助须知:如何正确求助?哪些是违规求助? 2877158
关于积分的说明 8198029
捐赠科研通 2544502
什么是DOI,文献DOI怎么找? 1374449
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749