亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 人工神经网络 深度学习 数据挖掘 计算机安全 业务 国际贸易
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:17
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models "forget" what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today's efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助xiaxia采纳,获得30
5秒前
量子星尘发布了新的文献求助10
37秒前
蜡笔小新完成签到,获得积分10
1分钟前
zhovy完成签到 ,获得积分10
1分钟前
1分钟前
Harrison发布了新的文献求助10
1分钟前
dynamoo完成签到,获得积分10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
壮观的海豚完成签到 ,获得积分10
1分钟前
1分钟前
xiaxia发布了新的文献求助30
1分钟前
自信号厂完成签到 ,获得积分0
2分钟前
852应助xiaxia采纳,获得30
2分钟前
和气生财君完成签到 ,获得积分10
3分钟前
CCS完成签到 ,获得积分10
3分钟前
dao发布了新的文献求助10
3分钟前
花落无声完成签到 ,获得积分10
3分钟前
馆长应助科研通管家采纳,获得30
3分钟前
彩虹儿应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得30
3分钟前
馆长应助科研通管家采纳,获得30
3分钟前
财路通八方完成签到 ,获得积分10
3分钟前
科研通AI5应助dao采纳,获得10
3分钟前
nolan完成签到 ,获得积分10
4分钟前
4分钟前
charih完成签到 ,获得积分10
4分钟前
费笑柳发布了新的文献求助20
4分钟前
华仔应助Harrison采纳,获得50
4分钟前
在水一方应助朱杰鑫采纳,获得10
5分钟前
5分钟前
李健应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
朱杰鑫发布了新的文献求助10
5分钟前
Harrison发布了新的文献求助50
5分钟前
5分钟前
朱杰鑫完成签到,获得积分10
5分钟前
飘逸天荷发布了新的文献求助20
5分钟前
木南完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910105
求助须知:如何正确求助?哪些是违规求助? 4186094
关于积分的说明 12999112
捐赠科研通 3953369
什么是DOI,文献DOI怎么找? 2167888
邀请新用户注册赠送积分活动 1186329
关于科研通互助平台的介绍 1093413