FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 人工神经网络 深度学习 数据挖掘 计算机安全 国际贸易 业务
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:26
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models "forget" what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today's efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助yw采纳,获得10
刚刚
刚刚
大模型应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
Akim应助科研通管家采纳,获得30
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
3秒前
初眠发布了新的文献求助10
3秒前
Foch发布了新的文献求助10
4秒前
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
李昕123发布了新的文献求助10
7秒前
维维逗奶完成签到,获得积分10
8秒前
9秒前
科研通AI6应助初眠采纳,获得10
9秒前
Akim应助懵懂的小夏采纳,获得20
11秒前
11秒前
橘子发布了新的文献求助10
11秒前
奋斗青发布了新的文献求助10
11秒前
12秒前
鲤鱼凌波发布了新的文献求助10
12秒前
科研通AI2S应助Juliette采纳,获得10
13秒前
13秒前
14秒前
852应助哈哈哈采纳,获得10
15秒前
霜降发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439