FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 数据挖掘 计算机安全 国际贸易 业务
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:3
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models “forget” what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today’s efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhl完成签到,获得积分10
刚刚
大模型应助轻松的雨旋采纳,获得10
刚刚
zhu完成签到,获得积分10
刚刚
ZeroL完成签到 ,获得积分0
刚刚
1秒前
1秒前
Rocky完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
1秒前
有一瓶完成签到,获得积分10
2秒前
称心砖头完成签到,获得积分10
2秒前
汉堡包应助小T儿采纳,获得10
3秒前
狂野书文完成签到,获得积分10
3秒前
爱静静应助otaro采纳,获得40
3秒前
camera发布了新的文献求助10
3秒前
4秒前
4秒前
Hu发布了新的文献求助10
4秒前
iu发布了新的文献求助10
4秒前
好了完成签到,获得积分10
5秒前
5秒前
怡然雨雪完成签到,获得积分10
5秒前
5秒前
科研通AI5应助李唯佳采纳,获得10
5秒前
万能图书馆应助祝雲采纳,获得10
5秒前
我爱学习完成签到 ,获得积分10
6秒前
111完成签到,获得积分10
6秒前
可乐要加冰完成签到,获得积分10
6秒前
深情安青应助郑开司09采纳,获得10
7秒前
娜行发布了新的文献求助10
7秒前
Auoroa完成签到,获得积分10
7秒前
明智之举完成签到,获得积分10
8秒前
赵赵完成签到,获得积分10
8秒前
共享精神应助lalala采纳,获得10
8秒前
Hello应助hf采纳,获得10
8秒前
8秒前
豆丁完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672