FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks

计算机科学 差别隐私 人工智能 机器学习 再培训 信息隐私 联合学习 大数据 人工神经网络 深度学习 数据挖掘 计算机安全 国际贸易 业务
作者
Lefeng Zhang,Tianqing Zhu,Haibin Zhang,Ping Xiong,Wanlei Zhou
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4732-4746 被引量:26
标识
DOI:10.1109/tifs.2023.3297905
摘要

Over the past decades, the abundance of personal data has led to the rapid development of machine learning models and important advances in artificial intelligence (AI). However, alongside all the achievements, there are increasing privacy threats and security risks that may cause significant losses for data providers. Recent legislation requires that the private information about a user should be removed from a database as well as machine learning models upon certain deletion requests. While erasing data records from memory storage is straightforward, it is often challenging to remove the influence of particular data samples from a model that has already been trained. Machine unlearning is an emerging paradigm that aims to make machine learning models "forget" what they have learned about particular data. Nevertheless, the unlearning issue for federated learning has not been completely addressed due to its special working mode. First, existing solutions crucially rely on retraining-based model calibration, which is likely unavailable and can pose new privacy risks for federated learning frameworks. Second, today's efficient unlearning strategies are mainly designed for convex problems, which are incapable of handling more complicated learning tasks like neural networks. To overcome these limitations, we took advantage of differential privacy and developed an efficient machine unlearning algorithm named FedRecovery. The FedRecovery erases the impact of a client by removing a weighted sum of gradient residuals from the global model, and tailors the Gaussian noise to make the unlearned model and retrained model statistically indistinguishable. Furthermore, the algorithm neither requires retraining-based fine-tuning nor needs the assumption of convexity. Theoretical analyses show the rigorous indistinguishability guarantee. Additionally, the experiment results on real-world datasets demonstrate that the FedRecovery is efficient and is able to produce a model that performs similarly to the retrained one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒋宁发布了新的文献求助10
1秒前
小李子完成签到 ,获得积分10
1秒前
2秒前
2秒前
凉月发布了新的文献求助10
2秒前
丰富南霜发布了新的文献求助10
2秒前
Jasper应助诸葛朝雪采纳,获得10
3秒前
多情的如冰完成签到 ,获得积分10
3秒前
jianlai发布了新的文献求助10
3秒前
4秒前
5秒前
善学以致用应助Sir.夏季风采纳,获得10
5秒前
孙兴燕完成签到,获得积分10
5秒前
鸡鱼蚝完成签到,获得积分10
5秒前
菁菁子衿完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
积极的夜蕾完成签到,获得积分10
9秒前
Ava应助史育川采纳,获得10
9秒前
9秒前
10秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
10秒前
是多少发布了新的文献求助10
10秒前
CipherSage应助外向半青采纳,获得10
12秒前
123发布了新的文献求助10
12秒前
安详忆雪发布了新的文献求助10
12秒前
活泼的幻丝完成签到,获得积分20
14秒前
孟醒发布了新的文献求助30
14秒前
15秒前
klyang应助畅快的千青采纳,获得50
15秒前
小杭76应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得30
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
星辰大海应助跳跃盼波采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
wxyshare应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182646
求助须知:如何正确求助?哪些是违规求助? 4369259
关于积分的说明 13605407
捐赠科研通 4220860
什么是DOI,文献DOI怎么找? 2314896
邀请新用户注册赠送积分活动 1313660
关于科研通互助平台的介绍 1262370