Development of a clinical prediction model for diabetic kidney disease with glucose and lipid metabolism disorders based on machine learning and bioinformatics technology.

支持向量机 疾病 脂质代谢 机器学习 糖尿病 生物信息学 医学 随机森林 Lasso(编程语言) 人工智能 计算生物学 列线图 计算机科学 代谢组学 生物 内科学 内分泌学 万维网
作者
Zhenqiang Bi,Wang Lj,Lin Yx,Zhang Yy,Wang Sh,Ziyan Fang
出处
期刊:PubMed 卷期号:28 (3): 863-878
标识
DOI:10.26355/eurrev_202402_35324
摘要

In this study, we investigated the internal relationship between the pathogenesis of diabetic kidney disease (DKD) and abnormal glucose and lipid metabolism to identify potential biomarkers for diagnosis and treatment and investigated the role of the immune microenvironment of glucose and lipid metabolism disorders in the occurrence and progression of DKD.The chip datasets GSE104948 and GSE96804 from the Gene Expression Common Database (GEO) were merged using the "lima" and "sva" software packages in R Software (4.2.3), and the merged dataset was used as the validation set. The intersection between the differential genes of DKD and the glucose and lipid metabolism genes in the MSigDB database was identified, and a nomogram of the incidence risk of DKD was built using three machine learning methods, namely LASSO regression, support vector machine (SVM), and random forest (RF), to validate the accuracy of the prediction model. Immune scores were conducted using the unsupervised clustering method, and patients were divided into two subgroups. The two subgroups were screened for differential genes for enrichment analysis. The differential genes of patients diagnosed with DKD were clustered into two gene subgroups for co-expression analysis. In this study, we utilized the Cytoscape software to construct a network of interactions among key genes.Using machine learning, a diagnostic model was developed with G6PC and HSD17B14 as key factors. Enrichment analysis and immune scoring demonstrated that the development of DKD was related to the imbalance in the microenvironment brought about by glucose lipid metabolism disorders.G6PC and HSD17B14 may be potential biomarkers for DKD, and the established predictive model is more helpful in predicting the incidence of DKD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tang发布了新的文献求助10
3秒前
5秒前
榆木先生完成签到 ,获得积分10
5秒前
9秒前
工力所发布了新的文献求助30
10秒前
tang完成签到,获得积分10
10秒前
13秒前
14秒前
星落枝头完成签到,获得积分20
15秒前
倩倩发布了新的文献求助10
15秒前
青鸟飞鱼发布了新的文献求助10
17秒前
19秒前
CodeCraft应助Millennial采纳,获得10
21秒前
Nice完成签到,获得积分10
23秒前
小马甲应助青鸟飞鱼采纳,获得10
27秒前
韩倩完成签到 ,获得积分10
32秒前
KK完成签到 ,获得积分10
32秒前
温水煮青蛙完成签到 ,获得积分10
35秒前
汉堡包应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
烟花应助科研通管家采纳,获得10
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
SciGPT应助科研通管家采纳,获得10
39秒前
39秒前
迷你的怀莲完成签到 ,获得积分10
39秒前
情怀应助云上人采纳,获得10
41秒前
42秒前
liudw完成签到,获得积分10
44秒前
44秒前
Siling完成签到 ,获得积分10
45秒前
46秒前
46秒前
xzc给xzc的求助进行了留言
47秒前
星辰大海应助俭朴的红牛采纳,获得10
47秒前
48秒前
工力所发布了新的文献求助30
51秒前
zzzzzzzzzzzzb发布了新的文献求助10
51秒前
delta发布了新的文献求助10
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023