Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yznfly应助catherine采纳,获得20
1秒前
jenningseastera完成签到,获得积分0
1秒前
小马甲应助科学徐采纳,获得10
1秒前
婉婉完成签到,获得积分10
1秒前
ASSA发布了新的文献求助10
1秒前
Bearbiscuit完成签到,获得积分10
1秒前
善学以致用应助PHHHH采纳,获得10
1秒前
MAVS完成签到,获得积分10
1秒前
lishuai完成签到,获得积分10
2秒前
2秒前
丘比特应助li采纳,获得10
2秒前
日月同辉完成签到,获得积分10
2秒前
TOF完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
852应助wuyou采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
勤劳滑板完成签到 ,获得积分10
5秒前
xx发布了新的文献求助10
6秒前
秋分前完成签到,获得积分10
6秒前
6秒前
东山完成签到,获得积分20
6秒前
淅川完成签到,获得积分10
6秒前
6秒前
彭于晏应助吨吨喝水采纳,获得10
6秒前
酱子完成签到 ,获得积分10
6秒前
7秒前
疯狂老马发布了新的文献求助10
7秒前
研友_zLaedL发布了新的文献求助10
7秒前
cathyliu完成签到,获得积分10
7秒前
诺z发布了新的文献求助10
7秒前
传奇3应助yuzi采纳,获得10
7秒前
一枝完成签到 ,获得积分10
8秒前
wangxin发布了新的文献求助10
8秒前
爱学习的小张完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659