Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助梁朝伟采纳,获得10
1秒前
cc发布了新的文献求助10
1秒前
刘雨森完成签到 ,获得积分10
1秒前
2秒前
月亮发布了新的文献求助10
2秒前
刘帅完成签到,获得积分10
3秒前
前后左右都是卷王完成签到,获得积分10
3秒前
kk完成签到,获得积分10
4秒前
怕孤独的谷波完成签到,获得积分10
5秒前
无极微光应助年轻秀采纳,获得20
7秒前
缥缈的机器猫完成签到,获得积分10
8秒前
学科研的小林完成签到,获得积分10
9秒前
9秒前
9秒前
眼睛大的傲菡完成签到,获得积分10
10秒前
Parotodus完成签到,获得积分10
11秒前
maybe完成签到,获得积分20
11秒前
大智若愚骨头完成签到,获得积分10
12秒前
12秒前
可耐的Gamma完成签到,获得积分10
13秒前
梁朝伟发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
17秒前
王梓亦完成签到,获得积分10
17秒前
SciGPT应助杨心晴采纳,获得10
18秒前
18秒前
东北信风完成签到,获得积分10
19秒前
浪里白条发布了新的文献求助10
19秒前
19秒前
Mike发布了新的文献求助10
19秒前
隐形曼青应助轻松豁采纳,获得10
20秒前
20秒前
ccob完成签到,获得积分10
20秒前
Lucas应助称心乘风采纳,获得10
21秒前
21秒前
jersey完成签到,获得积分10
21秒前
夏青发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646513
求助须知:如何正确求助?哪些是违规求助? 4771610
关于积分的说明 15035503
捐赠科研通 4805306
什么是DOI,文献DOI怎么找? 2569599
邀请新用户注册赠送积分活动 1526597
关于科研通互助平台的介绍 1485858