Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心观众完成签到,获得积分10
刚刚
刚刚
床头经济学完成签到,获得积分10
刚刚
7788完成签到,获得积分10
刚刚
刚刚
小子一阿一完成签到,获得积分10
刚刚
tl完成签到,获得积分10
刚刚
浮游应助yuxin采纳,获得10
刚刚
呆呆完成签到 ,获得积分10
刚刚
ccccccp完成签到,获得积分10
刚刚
刚刚
nemo完成签到,获得积分10
1秒前
阿七完成签到,获得积分10
1秒前
1秒前
宇文数学完成签到,获得积分10
2秒前
冬虫夏草完成签到,获得积分10
3秒前
风起人散发布了新的文献求助10
3秒前
3秒前
Yuksn发布了新的文献求助10
3秒前
诩阽发布了新的文献求助10
3秒前
chen完成签到,获得积分10
3秒前
4秒前
幸福一斩完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
lw不好找完成签到,获得积分10
4秒前
董烁烨发布了新的文献求助10
5秒前
5秒前
lwr1234发布了新的文献求助10
5秒前
qiqi完成签到,获得积分10
5秒前
荀之玉发布了新的文献求助10
6秒前
Owen应助e任思采纳,获得10
6秒前
6秒前
79发布了新的文献求助10
6秒前
sunbai完成签到 ,获得积分20
6秒前
钰钰yuyu完成签到,获得积分10
7秒前
wise111发布了新的文献求助10
7秒前
袁相宜完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5270592
求助须知:如何正确求助?哪些是违规求助? 4428746
关于积分的说明 13785589
捐赠科研通 4306594
什么是DOI,文献DOI怎么找? 2363149
邀请新用户注册赠送积分活动 1358858
关于科研通互助平台的介绍 1321740