Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh完成签到,获得积分20
刚刚
圆润的糯米糍完成签到 ,获得积分10
刚刚
淡然宛凝发布了新的文献求助10
1秒前
1秒前
聪明与摩羯完成签到,获得积分10
4秒前
Mercury发布了新的文献求助10
5秒前
5秒前
6秒前
bkagyin应助欣慰的海豚采纳,获得10
6秒前
张琳完成签到 ,获得积分10
6秒前
JamesPei应助qmx采纳,获得10
7秒前
10秒前
呆萌完成签到,获得积分20
11秒前
guanshujuan发布了新的文献求助10
12秒前
xxzheng完成签到,获得积分20
12秒前
12秒前
畅快的毛衣完成签到,获得积分10
14秒前
14秒前
18秒前
Fen应助独特的梦菲采纳,获得10
18秒前
激动的猫咪完成签到,获得积分20
18秒前
20秒前
21秒前
内向的雪旋完成签到,获得积分20
22秒前
23秒前
ixueyi完成签到,获得积分10
23秒前
Cinderpelt发布了新的文献求助10
24秒前
25秒前
桥豆抹茶发布了新的文献求助10
25秒前
qmx发布了新的文献求助10
26秒前
ZihuiCCCC完成签到,获得积分20
26秒前
Singularity应助草帽采纳,获得10
28秒前
hhhh发布了新的文献求助30
29秒前
ZC完成签到,获得积分10
33秒前
淡然夜白完成签到 ,获得积分10
34秒前
35秒前
36秒前
林齐发布了新的文献求助10
38秒前
流年完成签到,获得积分10
41秒前
tjfwg发布了新的文献求助10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503