Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huangJP完成签到,获得积分10
1秒前
情怀应助Tira采纳,获得10
1秒前
王阳洋完成签到,获得积分10
1秒前
1秒前
2秒前
通~发布了新的文献求助10
2秒前
李爱国应助非常可爱采纳,获得20
2秒前
2秒前
3秒前
阿敏发布了新的文献求助10
4秒前
JamesPei应助小憩采纳,获得10
4秒前
jkhjkhj发布了新的文献求助10
4秒前
风中香之发布了新的文献求助30
4秒前
忍冬完成签到,获得积分10
5秒前
Zhong发布了新的文献求助10
6秒前
胡图图关注了科研通微信公众号
6秒前
爱吃泡芙发布了新的文献求助20
6秒前
xiuxiu_27发布了新的文献求助10
6秒前
小书包完成签到,获得积分10
7秒前
xxx发布了新的文献求助10
7秒前
直率的钢铁侠完成签到,获得积分10
7秒前
大模型应助Elaine采纳,获得10
8秒前
花痴的骁完成签到 ,获得积分10
8秒前
F冯发布了新的文献求助10
9秒前
干卿完成签到,获得积分10
9秒前
9秒前
共享精神应助Zhong采纳,获得10
9秒前
le000000完成签到,获得积分10
10秒前
10秒前
爱笑向松完成签到 ,获得积分10
10秒前
华仔应助钟是一梦采纳,获得10
11秒前
11秒前
11秒前
11秒前
里已经完成签到,获得积分10
12秒前
spring完成签到 ,获得积分10
12秒前
13秒前
Kung完成签到 ,获得积分10
13秒前
动听的代曼完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740