Advanced intelligent monitoring technologies for animals: A survey

计算机科学
作者
Pengfei Xu,Yuanyuan Zhang,Minghao Ji,Songtao Guo,Zhanyong Tang,Xiang Wang,Jing Guo,Junjie Zhang,Ziyu Guan
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127640-127640
标识
DOI:10.1016/j.neucom.2024.127640
摘要

Effective animal intelligent monitoring is of great value in terms of ecological protection and endangered specie conservation. At present, computer vision technologies have shed light on animal intelligent monitoring. Especially, numerous deep learning-based models and methods have been developed to address various challenges, and have made substantial strides in this field. However, there are still several problems to be solved and related areas to be mined, such as exploring new strategies to enhance the robustness and generalization ability of models, designing novel models for complex environments, and establishing large-scale publicly available animal datasets for performance verification of models. Therefore, we comprehensively elaborated and analyzed existing works on animal intelligent monitoring based on advanced information science technologies, so as to provide useful information assistance for relevant researchers. In this paper, we focus on three primary task fields: precise animal localization, tracking and individual identification. Specifically, we elucidate the definition and significance of each monitoring task, and summarize the baseline models for addressing different problems. We provide a specific analysis of strategies and prototypes of the models and methods employed in each tasks following by the technical progression from traditional machine learning to deep learning. In addition, we make a comparison and analysis of the relevant methods, summarize their similarities and differences between them, and point out the advantages and disadvantages of these methods. Finally, we present several unresolved challenges and problems in animal intelligent monitoring and provide potential research directions in the future. We expect that our review can serve as reference and guidance for related research fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
charint应助科研通管家采纳,获得20
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
charint应助科研通管家采纳,获得20
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
asd应助科研通管家采纳,获得30
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
刚刚
asd应助科研通管家采纳,获得30
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
结实星星应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
asd应助科研通管家采纳,获得30
1秒前
结实星星应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
asd应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
贪玩鸵鸟发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
圆锥香蕉发布了新的文献求助200
1秒前
打打应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
asd应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得30
1秒前
1秒前
asd应助科研通管家采纳,获得30
1秒前
1秒前
asd应助科研通管家采纳,获得30
1秒前
1秒前
结实星星应助科研通管家采纳,获得10
1秒前
1秒前
asd应助科研通管家采纳,获得30
1秒前
结实星星应助科研通管家采纳,获得10
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133