Intelligent prediction method for underbreak extent in underground tunnelling

量子隧道 计算机科学 统计物理学 环境科学 物理 凝聚态物理
作者
Ming Tao,Zhixian Hong,H. Zhao,Minghui Zhao,Dong Wang
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier]
卷期号:176: 105728-105728 被引量:1
标识
DOI:10.1016/j.ijrmms.2024.105728
摘要

Underground tunnel excavation using the drill-and-blast method often results in underbreak occurrences due to improper blasting parameters and complex geological environment. This underbreak phenomenon has a profound impact on tunnel safety, stability and construction costs. Traditional approaches for predicting underbreak extent (UE) through field measurements and theoretical models exhibit limitations in terms of accuracy and efficiency. Consequently, it is urgent to develop a novel approach for UE prediction in tunnelling operations. In this paper, extreme gradient boosting (XGBoost) is first applied as the foundational algorithm, and slime mould algorithm (SMA) is implemented for tuning hyper-parameters of XGBoost. Meanwhile, six chaotic maps are integrated with SMA to initialize the population and improve the optimization performance. Subsequently, a dataset of 250 samples is collected from three underground mines in China, involving ten influential factors (RMR, uniaxial compressive strength (UCS), vertical principal stress (σv), lateral pressure coefficient (λ), excavation area (EA), powder factor (PF), specific charge (SC), advance length (AL), periphery hole burden (HB)and periphery hole spacing (HS)). Additionally, four indices, i.e., coefficient of determination (R2), variance accounted for (VAF), mean absolute error (MAE) and root mean square error (RMSE), are used to evaluate the comprehensive performance of these proposed COSMA-XGBoost models and four common machine learning models. Finally, a parametric sensitivity analysis is performed, and the optimal intelligent model is applied in practical tunnelling projects. The results indicate that chaotic optimized SMA models have better convergence ability and higher accuracy compared with the original SMA model. Notably, the PSMA-XGBoost model outperforms other models as the R2, VAF, MAE and RMSE values for the testing set are 0.979, 95.79%, 4.176 and 4.884, respectively, whereas 0.968, 94.25%, 4.274 and 5.012, respectively for training set. EA, RMR and UCS exhibit significant effects on UE. In practical tunneling projects, the engineering application of the PSMA-XGBoost model demonstrates its feasibility and efficiency in predicting UE within underground tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明媚完成签到,获得积分10
刚刚
Mjl完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI6应助耶耶耶采纳,获得10
1秒前
今后应助八九采纳,获得10
2秒前
王丹丹完成签到,获得积分20
2秒前
香蕉觅松完成签到 ,获得积分20
3秒前
上官若男应助搞怪的青梦采纳,获得10
3秒前
scarlett发布了新的文献求助10
3秒前
haha发布了新的文献求助10
4秒前
4秒前
Li应助Maximuszhao采纳,获得10
4秒前
z荩发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助能干妙竹采纳,获得30
5秒前
Jodie0610发布了新的文献求助10
5秒前
CGGBZLX发布了新的文献求助10
6秒前
yangzhuang发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
鳄鱼天使完成签到,获得积分10
8秒前
Ava应助山下梅子酒采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
czy完成签到,获得积分10
11秒前
朴素山兰发布了新的文献求助10
11秒前
11秒前
明媚发布了新的文献求助10
11秒前
桐桐应助高中生采纳,获得10
11秒前
12秒前
deep发布了新的文献求助10
13秒前
13秒前
scarlett完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341864
求助须知:如何正确求助?哪些是违规求助? 4477955
关于积分的说明 13937502
捐赠科研通 4374208
什么是DOI,文献DOI怎么找? 2403393
邀请新用户注册赠送积分活动 1396165
关于科研通互助平台的介绍 1368165