Intelligent prediction method for underbreak extent in underground tunnelling

量子隧道 计算机科学 统计物理学 环境科学 物理 凝聚态物理
作者
Ming Tao,Zhixian Hong,H. Zhao,Minghui Zhao,Dong Wang
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:176: 105728-105728 被引量:1
标识
DOI:10.1016/j.ijrmms.2024.105728
摘要

Underground tunnel excavation using the drill-and-blast method often results in underbreak occurrences due to improper blasting parameters and complex geological environment. This underbreak phenomenon has a profound impact on tunnel safety, stability and construction costs. Traditional approaches for predicting underbreak extent (UE) through field measurements and theoretical models exhibit limitations in terms of accuracy and efficiency. Consequently, it is urgent to develop a novel approach for UE prediction in tunnelling operations. In this paper, extreme gradient boosting (XGBoost) is first applied as the foundational algorithm, and slime mould algorithm (SMA) is implemented for tuning hyper-parameters of XGBoost. Meanwhile, six chaotic maps are integrated with SMA to initialize the population and improve the optimization performance. Subsequently, a dataset of 250 samples is collected from three underground mines in China, involving ten influential factors (RMR, uniaxial compressive strength (UCS), vertical principal stress (σv), lateral pressure coefficient (λ), excavation area (EA), powder factor (PF), specific charge (SC), advance length (AL), periphery hole burden (HB)and periphery hole spacing (HS)). Additionally, four indices, i.e., coefficient of determination (R2), variance accounted for (VAF), mean absolute error (MAE) and root mean square error (RMSE), are used to evaluate the comprehensive performance of these proposed COSMA-XGBoost models and four common machine learning models. Finally, a parametric sensitivity analysis is performed, and the optimal intelligent model is applied in practical tunnelling projects. The results indicate that chaotic optimized SMA models have better convergence ability and higher accuracy compared with the original SMA model. Notably, the PSMA-XGBoost model outperforms other models as the R2, VAF, MAE and RMSE values for the testing set are 0.979, 95.79%, 4.176 and 4.884, respectively, whereas 0.968, 94.25%, 4.274 and 5.012, respectively for training set. EA, RMR and UCS exhibit significant effects on UE. In practical tunneling projects, the engineering application of the PSMA-XGBoost model demonstrates its feasibility and efficiency in predicting UE within underground tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
冷静如柏完成签到,获得积分10
刚刚
小杭76应助科研通管家采纳,获得10
刚刚
幸运鹅应助科研通管家采纳,获得10
刚刚
走不开不快乐完成签到 ,获得积分10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
星辰大海应助dearzkj采纳,获得10
1秒前
小杭76应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
英姑应助呆熊采纳,获得10
1秒前
加油加油发布了新的文献求助10
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
小二郎应助lhz采纳,获得10
2秒前
情怀应助科研迪采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
拿起蜡笔小新完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
3秒前
Lijiahe1122发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609