亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent prediction method for underbreak extent in underground tunnelling

量子隧道 计算机科学 统计物理学 环境科学 物理 凝聚态物理
作者
Ming Tao,Zhixian Hong,H. Zhao,Minghui Zhao,Dong Wang
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier]
卷期号:176: 105728-105728 被引量:1
标识
DOI:10.1016/j.ijrmms.2024.105728
摘要

Underground tunnel excavation using the drill-and-blast method often results in underbreak occurrences due to improper blasting parameters and complex geological environment. This underbreak phenomenon has a profound impact on tunnel safety, stability and construction costs. Traditional approaches for predicting underbreak extent (UE) through field measurements and theoretical models exhibit limitations in terms of accuracy and efficiency. Consequently, it is urgent to develop a novel approach for UE prediction in tunnelling operations. In this paper, extreme gradient boosting (XGBoost) is first applied as the foundational algorithm, and slime mould algorithm (SMA) is implemented for tuning hyper-parameters of XGBoost. Meanwhile, six chaotic maps are integrated with SMA to initialize the population and improve the optimization performance. Subsequently, a dataset of 250 samples is collected from three underground mines in China, involving ten influential factors (RMR, uniaxial compressive strength (UCS), vertical principal stress (σv), lateral pressure coefficient (λ), excavation area (EA), powder factor (PF), specific charge (SC), advance length (AL), periphery hole burden (HB)and periphery hole spacing (HS)). Additionally, four indices, i.e., coefficient of determination (R2), variance accounted for (VAF), mean absolute error (MAE) and root mean square error (RMSE), are used to evaluate the comprehensive performance of these proposed COSMA-XGBoost models and four common machine learning models. Finally, a parametric sensitivity analysis is performed, and the optimal intelligent model is applied in practical tunnelling projects. The results indicate that chaotic optimized SMA models have better convergence ability and higher accuracy compared with the original SMA model. Notably, the PSMA-XGBoost model outperforms other models as the R2, VAF, MAE and RMSE values for the testing set are 0.979, 95.79%, 4.176 and 4.884, respectively, whereas 0.968, 94.25%, 4.274 and 5.012, respectively for training set. EA, RMR and UCS exhibit significant effects on UE. In practical tunneling projects, the engineering application of the PSMA-XGBoost model demonstrates its feasibility and efficiency in predicting UE within underground tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
自由的傲儿完成签到 ,获得积分10
4秒前
13秒前
勿昂完成签到 ,获得积分0
14秒前
Tendency完成签到 ,获得积分10
15秒前
王肖完成签到 ,获得积分10
15秒前
华仔应助阿恺采纳,获得10
16秒前
tlf发布了新的文献求助10
18秒前
太陽完成签到 ,获得积分10
21秒前
阿尼亚发布了新的文献求助10
30秒前
慕子默完成签到,获得积分10
41秒前
每天不烦恼完成签到,获得积分10
42秒前
43秒前
44秒前
韩保晨完成签到 ,获得积分10
44秒前
pass完成签到 ,获得积分10
48秒前
科研小白完成签到,获得积分20
48秒前
EED完成签到 ,获得积分10
50秒前
小冯完成签到 ,获得积分10
55秒前
1分钟前
Starr44发布了新的文献求助10
1分钟前
WindDreamer完成签到,获得积分10
1分钟前
许七安完成签到,获得积分10
1分钟前
apckkk完成签到 ,获得积分10
1分钟前
浅尝离白应助醉熏的志泽采纳,获得10
1分钟前
1分钟前
carol发布了新的文献求助10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
1分钟前
龙傲天发布了新的文献求助10
1分钟前
1分钟前
2分钟前
落沧完成签到 ,获得积分10
2分钟前
停騮_ 发布了新的文献求助10
2分钟前
瞬间完成签到 ,获得积分10
2分钟前
DagrZheng发布了新的文献求助10
2分钟前
JacekYu完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139484
求助须知:如何正确求助?哪些是违规求助? 2790346
关于积分的说明 7795065
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301438
科研通“疑难数据库(出版商)”最低求助积分说明 626219
版权声明 601146