Intelligent prediction method for underbreak extent in underground tunnelling

量子隧道 计算机科学 统计物理学 环境科学 物理 凝聚态物理
作者
Ming Tao,Zhixian Hong,H. Zhao,Minghui Zhao,Dong Wang
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:176: 105728-105728 被引量:1
标识
DOI:10.1016/j.ijrmms.2024.105728
摘要

Underground tunnel excavation using the drill-and-blast method often results in underbreak occurrences due to improper blasting parameters and complex geological environment. This underbreak phenomenon has a profound impact on tunnel safety, stability and construction costs. Traditional approaches for predicting underbreak extent (UE) through field measurements and theoretical models exhibit limitations in terms of accuracy and efficiency. Consequently, it is urgent to develop a novel approach for UE prediction in tunnelling operations. In this paper, extreme gradient boosting (XGBoost) is first applied as the foundational algorithm, and slime mould algorithm (SMA) is implemented for tuning hyper-parameters of XGBoost. Meanwhile, six chaotic maps are integrated with SMA to initialize the population and improve the optimization performance. Subsequently, a dataset of 250 samples is collected from three underground mines in China, involving ten influential factors (RMR, uniaxial compressive strength (UCS), vertical principal stress (σv), lateral pressure coefficient (λ), excavation area (EA), powder factor (PF), specific charge (SC), advance length (AL), periphery hole burden (HB)and periphery hole spacing (HS)). Additionally, four indices, i.e., coefficient of determination (R2), variance accounted for (VAF), mean absolute error (MAE) and root mean square error (RMSE), are used to evaluate the comprehensive performance of these proposed COSMA-XGBoost models and four common machine learning models. Finally, a parametric sensitivity analysis is performed, and the optimal intelligent model is applied in practical tunnelling projects. The results indicate that chaotic optimized SMA models have better convergence ability and higher accuracy compared with the original SMA model. Notably, the PSMA-XGBoost model outperforms other models as the R2, VAF, MAE and RMSE values for the testing set are 0.979, 95.79%, 4.176 and 4.884, respectively, whereas 0.968, 94.25%, 4.274 and 5.012, respectively for training set. EA, RMR and UCS exhibit significant effects on UE. In practical tunneling projects, the engineering application of the PSMA-XGBoost model demonstrates its feasibility and efficiency in predicting UE within underground tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx发布了新的文献求助10
刚刚
1秒前
2秒前
ZY完成签到,获得积分20
3秒前
3秒前
CAOHOU应助kkdkg采纳,获得10
4秒前
洛洛发布了新的文献求助20
5秒前
Akim应助笑语盈盈采纳,获得10
5秒前
牛牛完成签到,获得积分10
6秒前
oh应助6543210采纳,获得10
7秒前
7秒前
8秒前
mariawang发布了新的文献求助10
8秒前
理理理理发布了新的文献求助10
8秒前
8秒前
舒心莫言完成签到,获得积分10
10秒前
时臣的错发布了新的文献求助10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
pluto应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
ding应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
科研助手6应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
FIN应助科研通管家采纳,获得30
11秒前
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研助手6应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
瑶瑶瑶发布了新的文献求助30
12秒前
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998480
求助须知:如何正确求助?哪些是违规求助? 3537993
关于积分的说明 11273002
捐赠科研通 3276991
什么是DOI,文献DOI怎么找? 1807228
邀请新用户注册赠送积分活动 883823
科研通“疑难数据库(出版商)”最低求助积分说明 810049