Intelligent prediction method for underbreak extent in underground tunnelling

量子隧道 计算机科学 统计物理学 环境科学 物理 凝聚态物理
作者
Ming Tao,Zhixian Hong,H. Zhao,Minghui Zhao,Dong Wang
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier BV]
卷期号:176: 105728-105728 被引量:1
标识
DOI:10.1016/j.ijrmms.2024.105728
摘要

Underground tunnel excavation using the drill-and-blast method often results in underbreak occurrences due to improper blasting parameters and complex geological environment. This underbreak phenomenon has a profound impact on tunnel safety, stability and construction costs. Traditional approaches for predicting underbreak extent (UE) through field measurements and theoretical models exhibit limitations in terms of accuracy and efficiency. Consequently, it is urgent to develop a novel approach for UE prediction in tunnelling operations. In this paper, extreme gradient boosting (XGBoost) is first applied as the foundational algorithm, and slime mould algorithm (SMA) is implemented for tuning hyper-parameters of XGBoost. Meanwhile, six chaotic maps are integrated with SMA to initialize the population and improve the optimization performance. Subsequently, a dataset of 250 samples is collected from three underground mines in China, involving ten influential factors (RMR, uniaxial compressive strength (UCS), vertical principal stress (σv), lateral pressure coefficient (λ), excavation area (EA), powder factor (PF), specific charge (SC), advance length (AL), periphery hole burden (HB)and periphery hole spacing (HS)). Additionally, four indices, i.e., coefficient of determination (R2), variance accounted for (VAF), mean absolute error (MAE) and root mean square error (RMSE), are used to evaluate the comprehensive performance of these proposed COSMA-XGBoost models and four common machine learning models. Finally, a parametric sensitivity analysis is performed, and the optimal intelligent model is applied in practical tunnelling projects. The results indicate that chaotic optimized SMA models have better convergence ability and higher accuracy compared with the original SMA model. Notably, the PSMA-XGBoost model outperforms other models as the R2, VAF, MAE and RMSE values for the testing set are 0.979, 95.79%, 4.176 and 4.884, respectively, whereas 0.968, 94.25%, 4.274 and 5.012, respectively for training set. EA, RMR and UCS exhibit significant effects on UE. In practical tunneling projects, the engineering application of the PSMA-XGBoost model demonstrates its feasibility and efficiency in predicting UE within underground tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
周轩完成签到,获得积分10
2秒前
liusj完成签到,获得积分10
2秒前
ss发布了新的文献求助10
2秒前
Miyo完成签到,获得积分10
3秒前
3秒前
3秒前
高贵的帽子完成签到 ,获得积分10
3秒前
AN完成签到,获得积分10
3秒前
Catalysis123发布了新的文献求助10
4秒前
4秒前
开心的人杰完成签到,获得积分10
5秒前
科目三应助儒雅大象采纳,获得10
6秒前
共享精神应助Feijiahao采纳,获得10
6秒前
JBY发布了新的文献求助10
6秒前
7秒前
顺顺黎黎完成签到,获得积分10
7秒前
7秒前
7秒前
cjdsb发布了新的文献求助20
8秒前
liusj发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
陈媛发布了新的文献求助20
10秒前
shirley发布了新的文献求助10
11秒前
加缪应助Perseus采纳,获得10
12秒前
12秒前
12秒前
Gaox完成签到,获得积分10
12秒前
風声鶴唳发布了新的文献求助10
13秒前
13秒前
13秒前
852应助尊敬的芷卉采纳,获得10
13秒前
123b完成签到,获得积分10
14秒前
14秒前
快乐的忆安完成签到,获得积分10
14秒前
titijaychou发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170