Over-the-Air Distributed Neural Network in Internet of Things with Threat Modeling for Replay Attacks

物联网 计算机科学 人工神经网络 计算机安全 重放攻击 互联网隐私 互联网 万维网 人工智能 认证(法律)
作者
Chao Ren,Chuyue Zeng,Yingqi Li,Haijun Zhang
出处
期刊:Lecture notes in electrical engineering 卷期号:: 133-143
标识
DOI:10.1007/978-981-99-7502-0_14
摘要

Large scale distributed neural networks have demonstrated promise for various inference tasks in Internet of Things (IoT) devices, including intelligent security monitoring and defense against network threats. However, the massive amounts of data generated by IoT applications and limited computational capabilities present significant challenges in implementing typical applications, such as secure protocols for data confidentiality. Over-The-Air (OTA) computation, a recently proposed physical layer computing architecture, has great potential to address these issues. In this paper, we propose an OTA distributed neural network with the mutual benefit of joint computing and communication. However, the open channel environment in which the network's forward computation is implemented renders OTA-based joint computing and communication methods vulnerable to replay attacks, thereby compromising the accuracy of the network performance and wasting valuable bandwidth resources due to backpropagation of contaminated information during OTA computing. A threat model of network is established to investigate the impact of replay attacks during the iterative process. Our analysis and numerical results demonstrate that the replay attacks have a significantly impact on the network. Specifically, the test accuracy rate decreases from 85 to 35%, and the convergence rate decreases by an average of $$40\%$$ . When the number of iterations is set to 500, the success probability of replay attacks is 0.378.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盖世英雄的小超人完成签到,获得积分10
4秒前
5秒前
8秒前
凡平完成签到,获得积分10
9秒前
禾沐发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助第七个星球采纳,获得10
12秒前
如意2023完成签到 ,获得积分10
13秒前
liu完成签到,获得积分10
16秒前
称心寒松发布了新的文献求助10
16秒前
zzjjhh完成签到,获得积分10
18秒前
DLL完成签到 ,获得积分10
18秒前
GAOBIN000发布了新的文献求助10
19秒前
19秒前
22秒前
栗子完成签到,获得积分10
23秒前
搜集达人应助舒适乐儿采纳,获得10
26秒前
xmy发布了新的文献求助10
28秒前
令狐绝音发布了新的文献求助30
32秒前
心动nofear完成签到,获得积分20
33秒前
姜sir完成签到 ,获得积分10
36秒前
36秒前
39秒前
lu完成签到,获得积分10
39秒前
橘白应助涵涵采纳,获得10
41秒前
42秒前
43秒前
猪猪hero应助心动nofear采纳,获得10
43秒前
CH发布了新的文献求助10
43秒前
文天烽完成签到,获得积分10
44秒前
44秒前
45秒前
wzlcarrot发布了新的文献求助10
48秒前
sunshine发布了新的文献求助10
50秒前
yy应助第七个星球采纳,获得10
50秒前
称心寒松发布了新的文献求助10
51秒前
52秒前
52秒前
53秒前
儒雅的焦发布了新的文献求助10
54秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478